Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
\(A=x^2+4x+100\)
\(A=x^2+2.x.2+2^2+96\)
\(A=\left(x+2\right)^2+96\)
\(\left(x+2\right)^2+96\le0\)
\(\left(x+2\right)^2+96\le96\)
\(\Leftrightarrow A\le96\)
\(A_{min}\Leftrightarrow A=10\)
Dấu "=" xảy ra : \(\left(x+2\right)^20\)
\(x+2=0\)
\(x=-2\)
A=−2x2−10y2+4xy+4x+4y+2016A=−2x2−10y2+4xy+4x+4y+2016
=−2.(x2+5y2−4xy−4x−4y)+2016=−2.(x2+5y2−4xy−4x−4y)+2016
=−2.(x2+4y2+4−4xy−4x+8y+y2−12y+36)+2.36+2016=−2.(x2+4y2+4−4xy−4x+8y+y2−12y+36)+2.36+2016
=−2.[(x−2y−2)2+(y−6)2]+2088=−2.[(x−2y−2)2+(y−6)2]+2088
Ta có: (x−2y−2)2+(y−6)2≥0(x−2y−2)2+(y−6)2≥0
⇒−2.[(x−2y−2)2+(y−6)2]≤0⇒−2.[(x−2y−2)2+(y−6)2]≤0
⇒−2.[(x−2y−2)2+(y−6)2]+2088≤2088⇒−2.[(x−2y−2)2+(y−6)2]+2088≤2088
⇒A≤2088⇒A≤2088
Vậy giá trị lớn nhất của A=2088A=2088 khi: \hept{x−2y−2=0y=6⇒\hept{x=2y+2y=6⇒\hept{x=14y=6\hept{x−2y−2=0y=6⇒\hept{x=2y+2y=6⇒\hept{x=14y=6
Thu gọn
\(A=-2\left(x^2+2xy+y^2\right)+4\left(x+y\right)-2-8y^2+2018\\ A=-2\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-8y^2+2018\\ A=-2\left(x+y-1\right)^2-8y^2+2018\le2018\\ A_{max}=2018\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)
Chọn mình nha mình sẽ làm típ 1 bài nữa
\(A=\frac{27-12x}{x^2+9}\)
\(A=\frac{x^2-12x+36-x^2-9}{x^2+9}\)
\(A=\frac{\left(x-36\right)^2-\left(x^2+9\right)}{x^2+9}\)
\(A=\frac{\left(x-36\right)^2}{x^2+9}-\frac{x^2+9}{x^2+9}\)
\(A=\frac{\left(x-36\right)^2}{x^2+9}-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=36\)