Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
Mình nghĩ thế này ạ
xy + 2(yz + xz) =5 => xy + 2yz + 2xz =5
Mình áp dụng bất đẳng thức này nhé :)
Ta có: \(\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\forall x,y\)
\(\Rightarrow\frac{1}{2}\left(x^2+y^2\right)\ge xy\forall x,y\)(1)
Chứng minh tương tự ta được \(y^2+z^2\ge2yz\forall y,z\)(2)
\(x^2+z^2\ge2xz\forall x,z\)(3)
Cộng vế (1) (2) (3) ta được \(\frac{1}{2}\left(x^2+y^2\right)+y^2+z^2+x^2+z^2\ge xy+2yz+2xz\forall x,y,z\)
\(\Rightarrow\frac{1}{2}x^2+\frac{1}{2}y^2+x^2+y^2+z^2+z^2\)\(\ge5\)\(\forall x,y,z\)
\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+2z^2\ge5\forall x,y,z\)
nhân cả 2 vế với 2 nè
\(\Rightarrow3x^2+3y^2+4z^2\ge10\forall x,y,z\)
\(\Rightarrow3\left(x^2+y^2\right)+4z^2\ge10\forall x,y,z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\y=z;x=z\\xy+2\left(yz+xz\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2+2.\left(x^2+x^2\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\5x^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=1\end{cases}\Leftrightarrow}}\)x=y=z = 1 hoăc
Vậy giá trị nhỏ nhất của biểu thức là 10 tại x=y=z=1;-1
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^2}{2}+8y^2\geq 4xy\)
\(\frac{x^2}{2}+8z^2\geq 4xz\)
\(2(y^2+z^2)\geq 4yz\)
\(4y^2+1\geq 4y\)
\(4y+2\geq 4\sqrt{2y}\)
Cộng theo vế các BĐT trên ta có:
\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)
Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$
Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...