Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2022x-2020}{3x+2}=\frac{2022x+1348-3368}{3x+2}\)
\(=674-\frac{336}{3x+2}\)
Bạn lập bảng là xog.
TL:
\(M=\frac{2022x-2020}{3x-2}=\frac{2022x+1348-3368}{3x-2}\)
\(=674-\frac{336}{3x+2}\)
_HT_
Lời giải:
$M=\frac{2022x-2021}{3x+2}=\frac{674(3x+2)-3369}{3x+2}$
$=674-\frac{3369}{3x+2}$
Để $M$ nhỏ nhất thì $\frac{3369}{3x+2}$ lớn nhất
Điều này xảy ra khi $3x+2$ là số nguyên dương nhỏ nhất.
Với $x$ nguyên thì $3x+2$ là số nguyên dương nhỏ nhất khi $3x+2=2$
$\Leftrightarrow x=0$
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Mik nghĩ là............
câu 1 ~ 2011
câu 2 ~ -4
Sai thì cho mik xin lũi nhó
C = 2024 - | 2022\(x\) - 1|
Vì |2022\(x\) - 1| ≥ 0
- |2022\(x\) - 1| ≤ 0
C = 2024 - |2022\(x\) - 1| ≤ 2024
Cmax = 2024 xảy ra khi \(x=\dfrac{1}{2022}\)
Vậy biểu thức không có giá trị nhỏ nhất.
Ơ? Đề là 2024 / 4-|2022x-1| mà???