Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
a)\(\left(x-2\right)^2-1\)
Dễ thấy:\(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
Đẳng thức xảy ra khi \(x=2\)
b)\(\left(x^2-9\right)^2+\left|y-2\right|+10\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x^2-9\right)^2\ge0\\\left|y-2\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2-9=0\\y-2=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\pm3\\y=2\end{matrix}\right.\)
c)\(\dfrac{3}{\left(x-2\right)^2+5}\)
Dễ thấy:
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\dfrac{1}{\left(x-2\right)^2+5}\le\dfrac{1}{5}\Rightarrow\dfrac{3}{\left(x-2\right)^2+5}\le\dfrac{3}{5}\)
Đẳng thức xảy ra khi \(x-2=0\Rightarrow x=2\)
d)\(-10-\left(x-30\right)^2-\left|y-5\right|\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-30\right)^2\ge0\\\left|y-5\right|\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}-\left(x-30\right)^2\le0\\-\left|y-5\right|\le0\end{matrix}\right.\)
\(\Rightarrow-\left(x-30\right)^2-\left|y-5\right|\le0\)
\(\Rightarrow10-\left(x-30\right)^2-\left|y-5\right|\le10\)
Đẳng thức xảy ra khi \(\Rightarrow\left\{{}\begin{matrix}-\left(x-30\right)^2=0\\-\left|y-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=5\end{matrix}\right.\)
a) \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-1\ge-1\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy GTNN của bt = -1 khi x = 2.
b) \(\left(x^2-9\right)^2\ge0;\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Dấu "=" xảy ra khi \(\left(x^2-9\right)^2=0;\left|y-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm3\\y=2\end{matrix}\right.\)
Vậy GTNN của bt = 10 khi ...
c) Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\dfrac{3}{\left(x-2\right)^2+5}\ge\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy GTNN của bt = \(\dfrac{3}{5}\) khi x = 2.
Trước hết thế đã.
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
a) A=(x-3)^2 +9
Vì (x-3)^2 luôn > hoặc = 0 với mọi x
Nên A > hoặc = 0+9=9
Để A=9 thì (x-3)^2=0
=> x-3=0 <=> x=3
Vậy GTNN(A) =9<=>x=3
b) Ta có: \(B=\left(x-1\right)^2+\left(y+2\right)^2+10\ge10,\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy MIN B = 10 \(\Leftrightarrow x=-1;y=-2\)
c) Ta có: \(C=\left|x-1\right|+\left(2y-1\right)^4+1\ge1,\forall x,y\)
Dấu "=" xảy ra:\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy MIN C = 1 \(\Leftrightarrow x=1;y=\dfrac{1}{2}\)