Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : a^3/a^2+b^2
= (a^3+ab^2)/a^2+b^2 - ab^2/a^2+b^2
= a - ab^2/a^2+b^2
>= a - ab^2/2ab
= a - b/2
Tương tự : b^3/b^2+c^2 >= b - c/2 và c^3/c^2+a^2 >= c - a/2
=> P >= a+b+c-(a+b+c)/2 = a+b+c/2 = 3/2
Dấu "=" xảy ra <=> a=b=c=1
Vậy GTNN của P = 3/2 <=> a=b=c=1
Tk mk nha
Câu 2a
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2-\left(a^2c^2+b^2d^2+a^2d^2+b^2c^2\right)=0\)
\(\Leftrightarrow0=0\)( đpcm )
Câu 2b
\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le\left(a^2+b^2\right)c^2+d^2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow2abcd\le b^2c^2+a^2d^2\)
\(\Leftrightarrow0\le b^2c^2-2abcd+a^2d^2\)
\(\Leftrightarrow0\le\left(bc-ad\right)^2\)( đpcm )
Câu 4a
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đpcm )
Câu 4c
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Rightarrow12\ge2\sqrt{15ab}\)
\(\Rightarrow6\ge\sqrt{15ab}\)
\(\Rightarrow6^2\ge15ab\)
\(\Rightarrow36\ge15ab\)
\(\Rightarrow ab\le\frac{12}{5}\)
\(\Leftrightarrow P\le\frac{12}{5}\)
Vậy GTLN của \(P=\frac{12}{5}\)
Ta có
a2 + b2 + c2 \(\ge\)ab + bc + ca
<=> 2(a2 + b2 + c2)\(\ge\)2(ab + bc + ac)
<=> 3(a2 + b2 + c2)\(\ge\)(a + b + c)2
<=> a2 + b2 + c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)= \(\frac{9}{4×3}=\frac{3}{4}\)
Đạt GTNN khi a = b = c = \(\frac{1}{2}\)
Câu 1: giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=\frac{9}{4}\)\(\Rightarrow2\left(ab+ac+bc\right)=\frac{9}{4}-\left(a^2+b^2+c^2\right)\)
mà ta có \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-\frac{9}{4}+\left(a^2+b^2+c^2\right)\ge0\)
\(3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\frac{3}{4}\)có \(\left(a^2+b^2+c^2\right)\)đạt min là 3/4 khi và chỉ khi a=b=c=1/2
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)
Áp dụng bđt Bunhiacopxki, ta có \(\frac{9}{4}=\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
BT đạt giá trị nhỏ nhất bằng 3/4 khi a = b = c = 1/2