Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Áp dụng BĐT Bunhiacopski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4x+\frac{1}{x}\right)\)
Tương tự:
\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4y+\frac{1}{y}\right)\)
Cộng lại ta được:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{17}}\left(4x+4y+\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{1}{\sqrt{17}}\left[4\left(x+y\right)+\frac{4}{x+y}\right]=\frac{1}{\sqrt{17}}\left(16+1\right)=\sqrt{17}\)
Dấu "=" xảy ra tại x=y=2
\(P=\frac{\left(\sqrt{x}\right)^3-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
\(P=\frac{x}{\sqrt{x}+1}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(P=............\)?????
ĐKXĐ: \(x\ge0,x\ne9\)
a) \(P=\frac{3\sqrt{x}+2}{\sqrt{x}+1}+\frac{2\sqrt{x}+3}{\sqrt{x}-3}-\frac{3\left(3\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-3}\right)}\)
\(=\frac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3\left(3\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3x-9\sqrt{x}+2\sqrt{x}-6+2x+2\sqrt{x}-3\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{5x-15\sqrt{x}-2\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{5\sqrt{x}-2}{\sqrt{x}+1}\)
b) Ta có: \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
Do đó: \(P=\frac{5\left(\sqrt{3}+1\right)-2}{\left(\sqrt{3}+1\right)+1}=\frac{5\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(5\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right)}=7\sqrt{3}-9\)
c) Ta có \(P=\frac{5\sqrt{x}-2}{\sqrt{x}+1}=\frac{5\sqrt{x}+5-7}{\sqrt{x}+1}\)
\(P=5-\frac{7}{\sqrt{x}+1}\)
Vì \(\frac{7}{\sqrt{x}+1}>0\)nên \(P\)có giá trị nhỏ nhất khi và chỉ khi \(\frac{7}{\sqrt{x}+1}\)lớn nhất
\(\Leftrightarrow\sqrt{x}+1\)nhỏ nhất \(\Leftrightarrow x=0\)
Khi đó minP=5-7=-2
Lời giải :
\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}\)
Áp dụng AM-GM :
\(A\ge2\sqrt{2\sqrt{x}\cdot\frac{2}{\sqrt{x}}}=2\cdot2=4\)
Dấu "=" xảy ra \(\Leftrightarrow2\sqrt{x}=\frac{2}{\sqrt{x}}\Leftrightarrow x=1\)