\(\sqrt[3]{3+2\sqrt{2}}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q

1) CM: AH.AB=QA.BC

2)CM: BF.BA+CE.CA=BC2

3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn

2 tháng 9 2018

\(x=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{3}+1}+\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(3+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{9-3}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{3+\sqrt{3}+3-\sqrt{3}}{6}=\dfrac{6}{6}=1\)

\(x=\sqrt{2}\)

\(y=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(y\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)

\(y\sqrt{2}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(y\sqrt{2}=\sqrt{7}+1-\sqrt{7}+1\)

\(y\sqrt{2}=2\)

\(y=\dfrac{2}{\sqrt{2}}\)

Thay \(x=\sqrt{2},y=\dfrac{2}{\sqrt{2}}\) vào A ta có:

\(A=\dfrac{\sqrt{2}.\dfrac{2}{\sqrt{2}}-1}{\sqrt{2}+\dfrac{2}{\sqrt{2}}}-\dfrac{1-\sqrt{2}.\dfrac{2}{\sqrt{2}}}{2\sqrt{2}-\dfrac{2}{\sqrt{2}}}\)

\(=\dfrac{2-1}{2\sqrt{2}}-\dfrac{1-2}{\sqrt{2}}\)

\(=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{2}}{4}\)

Tự kết luận nha

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

NV
8 tháng 8 2020

5.

ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)

\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

6.

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)

NV
8 tháng 8 2020

2.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)

3.

\(•x=3+\sqrt{2}\\ x^2=\left(3+\sqrt{2}\right)^2\\ x^2=9+2.3.\sqrt{2}+2\\ x^2=11+6\sqrt{2}\\• y=\sqrt{11+6\sqrt{2}}\\ y^2=\left(\sqrt{11+6\sqrt{2}}\right)^2\\ y^2=11+6\sqrt{2}\)

\(\Rightarrow x^2=y^2=11+6\sqrt{2}\)

23 tháng 9 2017

1. ta có : \(4\sqrt{7}=\sqrt{112}\)

\(3\sqrt{3}=\sqrt{27}\)

ta thấy : \(\sqrt{112}>\sqrt{27}\) hay \(4\sqrt{7}>3\sqrt{3}\)

2. \(\dfrac{1}{4}\sqrt{82}=\sqrt{\dfrac{41}{8}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

ta thấy :\(\sqrt{\dfrac{41}{8}}< \sqrt{\dfrac{36}{7}}\) hay \(\dfrac{1}{4}\sqrt{82}< 6\sqrt{\dfrac{1}{7}}\)

3. \(x^2=\left(3+\sqrt{2}\right)^2\)

\(y^2=11+6\sqrt{2}\)=\(\left(3+\sqrt{2}\right)^2\)

ta thấy : \(x^2=y^2\Rightarrow x=y\)

2 tháng 7 2019

a)\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)=\(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}\)=\(\sqrt{3}\)

b)\(\frac{2\sqrt{3}-6}{\sqrt{8}-\sqrt{2}}\)

2 tháng 7 2019

\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)=\(\frac{\sqrt{y}\left(\sqrt{y}-2\right)}{\sqrt{y}-2}\)=\(\sqrt{y}\)

d) \(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x+3}\right)}{\sqrt{x}-1}\)=\(\sqrt{x}\)+3

e)\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)=\(\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)=\(\sqrt{y}\)-1

g)\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x+3}}\)

chúc bạn học tốthaha