K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

a) \(sin120^o=sin60^o=\dfrac{\sqrt{3}}{2};cos120^o=-cos60^o=-\dfrac{1}{2}\);
\(tan120^o=-\sqrt{3};cot120^o=\dfrac{-1}{\sqrt{3}}\).
b) \(sin150^o=sin30^o=\dfrac{1}{2};cos150^o=-cos30^o=-\dfrac{\sqrt{3}}{2}\).
\(tan150^o=-tan30^o=-\dfrac{\sqrt{3}}{3}\); \(cot150^o=-cot30^o=-\sqrt{3}\).
c)\(sin135^o=sin45^o=\dfrac{\sqrt{2}}{2};cos135^o=-cos45^o=-\dfrac{\sqrt{2}}{2}\).
\(tan135^o=-tan45^o=-1\); \(cot135^o=-1\).

1 tháng 12 2021

Làm sao bạn tính ra vậy

21 tháng 9 2023

a) \(\left\{{}\begin{matrix}sin120^o=\dfrac{\sqrt{3}}{2}\\cos120^o=-\dfrac{1}{2}\\tan120^o=-\sqrt{3}\\cot120^o=-\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}sin150^o=\dfrac{1}{2}\\cos150^o=-\dfrac{\sqrt{3}}{2}\\tan150^o=-\dfrac{\sqrt{3}}{3}\\cot150^o=-\sqrt{3}\end{matrix}\right.\)

c) \(\left\{{}\begin{matrix}sin180^o=0\\cos180^o=-1\\tan180^o=0\\cot180^o\left(\varnothing\right)\end{matrix}\right.\) 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\begin{array}{l}\sin {120^o} = \sin \;({180^o} - {60^o}) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\cos {150^o} =  - \cos \;({180^o} - {30^o}) =  - \cos {30^o} =  - \frac{{\sqrt 3 }}{2};\\\cot {135^o} =  - \cot \;({180^o} - {45^o}) =  - \cot {45^o} =  - 1.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Đặt  \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)

Ta có: \(\left\{ \begin{array}{l}\cos {135^o} =  - \cos {45^o};\cos {180^o} =  - \cos {0^o}\\\tan {150^o} =  - \tan {30^o}\end{array} \right.\)

\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow A =  - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A =  - \frac{{2 - \sqrt 2  + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A =  - \frac{{\left( {2 - \sqrt 2  + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A =  - \frac{{6 + 2\sqrt 3  - 3\sqrt 2  - \sqrt 6  + 6\sqrt 3  + 6}}{6}\\ \Leftrightarrow A =  - \frac{{12 + 8\sqrt 3  - 3\sqrt 2  - \sqrt 6 }}{6}.\end{array}\)

b)

Đặt  \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {120^o} =  - \cos {60^o}\\\cot {135^o} =  - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)

\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)

\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)

\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)

c

Đặt  \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)

\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)

3 tháng 10 2019

Với 0 < α < π/2 thì cosα >0, sinα >0. Ta có

     1   -   sin 2 α   =   cos 2 α

    Mặt khác cos 2 α   =   ( 2 sin α ) 2   =   4 sin 2 α nên 5 sin 2 α = 1 hay

Giải sách bài tập Toán 10 | Giải sbt Toán 10

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\cos {0^o} = 1;\;\cos {120^o} =  - \frac{1}{2}\)

Lại có: \(\cos {140^o} =  - \cos \left( {{{180}^o} - {{40}^o}} \right) =  - \cos {40^o}\)  

\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)

Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)  

\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)

\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

Ta có: \(\tan {115^o} =  - \tan \left( {{{180}^o} - {{115}^o}} \right) =  - \tan {65^o}\)

Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)

\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Ta có: \(\cot {100^o} =  - \cot \left( {{{180}^o} - {{100}^o}} \right) =  - \cot {80^o}\)

Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o}  =- \tan {10^o}\)

\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)

7 tháng 4 2022

Em 2k8 ms học nên k chắc

Vì 0 < \(\alpha< \dfrac{\pi}{2}\)  => sin \(\alpha>0\)

Cos \(\alpha=\dfrac{1}{3}\)  \(\Rightarrow sin\alpha=\sqrt{1-\dfrac{1}{9}}=\dfrac{2\sqrt{2}}{3}\)

tan \(\alpha=2\sqrt{2}\)  ; cot \(\alpha=\dfrac{1}{2\sqrt{2}}\)

7 tháng 4 2022

giỏi v em lm đúng r đấy

30 tháng 3 2017

Giải bài 1 trang 62 sgk Hình học 10 | Để học tốt Toán 10

NV
29 tháng 4 2021

\(0< a< \dfrac{\pi}{2}\Rightarrow0< \dfrac{a}{2}< \dfrac{\pi}{4}\Rightarrow sin\dfrac{a}{2}>0\)

\(\Rightarrow sin\dfrac{a}{2}=\sqrt{1-cos^2\dfrac{a}{2}}=\dfrac{3}{5}\)

\(sina=2sin\dfrac{a}{2}cos\dfrac{a}{2}=2.\left(\dfrac{4}{5}\right)\left(\dfrac{3}{5}\right)=\dfrac{24}{25}\)

\(cosa=\pm\sqrt{1-sin^2a}=\pm\dfrac{7}{25}\)

\(tana=\dfrac{sina}{cosa}=\pm\dfrac{24}{7}\)

29 tháng 4 2021

Em thưa thầy là cosa với tana < 0 

29 tháng 8 2019

Với giá trị x = 0 thì vế trái của phương trình tương đương, còn vế phải âm nên phương án A và B đều bị loại. Tương tự, với x = -2 thì vế trái dương, vế phải âm nên phương án D bị loại.

Đáp án: C