K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

TA CÓ |X-2013|\(\ge\) = 0 

=>2014-|X-2013| PHẢI CÓ GT LỚN NHẤT

X-2013=0=>X=2013

VAAYJGTLN CỦA BIỂU THỨC LÀ 2014-|X-2013|

=2014-|2013-2013|

=2014-0=>GTLN LÀ 2014

20 tháng 3 2019

\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)

\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

V...

25 tháng 3 2020

Ta có : P = |x - 2012| + |x - 2013| = |x - 2012| + |2013 - x| \(\ge\)|x - 2012 + 2013 - x| = 1 

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\2013\ge x\end{cases}\Rightarrow}\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)

Vậy Min P = 1 <=> \(2012\le x\le2013\)

27 tháng 3 2020

ta có p=/x-2012/+/x-2013/

=>p=/x-2012/+/2013-x/

ÁP DỤNG BẤT Đẳng THỨC /A/+/B/>,=/A+B/

=>/x-2012/+/2013-x/>=/x-2012+2013-x/=1

hay p>=1

dấu bằng xảy ra khi và chỉ khi /x-2012/x/2013-x/>=0

xét x-2012=0=>x=2012

2013-x=0=>x=2013

lập bảng xét dấu các giá trị của biểu thức x-2012 và 2013-x

x 2012 2013 
x-2012-0+/+
2013-x+/+0-
(x-2012)*(2013-x)-0+0-

=>2012=<x<=2013

vậy gtnn của p là 1 khi và chỉ khi 2012=<x=<2013

giải nhanh hộ mình cái

7 tháng 11 2018

khó vậy

4 tháng 1 2017

bài dễ ợt mà làm ko đc

4 tháng 1 2017

Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)

=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)

Ta xét các trường hợp: 

TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)

TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)

TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)

Vậy (x;y;z) là các hoán vị của (1;2;3)

1 tháng 10 2020

a) \(A=0,5-\left|x-3,5\right|\le0,5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-3,5\right|=0\Rightarrow x=3,5\)

Vậy Max(A) = 0,5 khi x = 3,5

b) \(C=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)

Vậy Min(C) = 1,7 khi x = 3,4

Ta có: \(\left|x\right|>=0\forall x\)

=>\(\left|x\right|+2023>=2023\forall x\)

=>\(\dfrac{2022}{\left|x\right|+2023}< =\dfrac{2022}{2023}\forall x\)

=>\(A< =\dfrac{2022}{2023}\forall x\)

Dấu '=' xảy ra khi |x|=0

=>x=0

Vậy: \(A_{max}=\dfrac{2022}{2023}\) khi x=0

8 tháng 12 2023

\(A=\dfrac{2022}{\left|x\right|+2023}\)

Ta thấy: \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{1}{\left|x\right|+2023}\le\dfrac{1}{2023}\forall x\)

\(\Rightarrow A=\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu \("="\) xảy ra khi: \(x=0\)

Vậy \(Max_A=\dfrac{2022}{2023}\) khi \(x=0\).