K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

Ta có:

\(\left(x+\dfrac{1}{2}\right)^2\)+1\(\ge\)1

\(\left(x+\dfrac{1}{2}\right)^2\)\(\ge\)0

Dấu ''='' xảy ra khi:

\(\left(x+\dfrac{1}{2}\right)^2\)=0

=>x+\(\dfrac{1}{2}\)=0

=>x=\(\dfrac{-1}{2}\)

Vậy GTNN của \(\left(x+\dfrac{1}{2}\right)^2\)+1 là 1 khi x=\(\dfrac{-1}{2}\)

20 tháng 3 2017

mng oi giup minh voi nhekhocroi

2 tháng 4 2019

X=2013 và Y=2014 thỉ biểu thức đó có giá trị nn

2 tháng 4 2019

thi ban tim ho mk

8 tháng 5 2016

Ta có: |x-1| + |x-2| = |x-1| + |2-x|

Mà |x-1| + |x-2| \(\ge\) |x-1+x-2| hay |x-1| + |2-x| \(\ge\) |x-1+2-x|

                                         \(\Rightarrow\) |x-1| + |2-x| \(\ge\) 1

Vậy A có GTNN là 1 khi x \(\in\) {1;2}

    

8 tháng 5 2016

\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),dấu "=" xảy ra \(\Leftrightarrow ab\ge0\),ta có:

\(A\ge\left|\left(x-1\right)+\left(2-x\right)\right|=\left|x-1+2-x\right|=\left|1\right|=1\)

\(\Rightarrow A_{min}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)