Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Với M
Ta có M= x2+y2 = x2+y2+2xy-2xy=(x+y)2 - 2xy= (-9)2 - 2.18 = 81- 36 = 45
* Với N
Ta có M = x4 + y4 = (x2)2 + (y2)2 + 2(xy)2 - 2(xy)2 = (x2+y2)2 + 2 (xy)2= 452 + 2. 182= 2673
* Với T
Ta có T = x2 - y2 => chịu
x^2 +y^2 =x^2 + 2xy + y^2 - 2xy
(x+y)^2 - 2xy
(-9)^2-2*18
81 - 36
45
x2 + y2 + z2 = xy + 3y + 2z - 4
<=> 4x2 + 4y2 + 4z2 = 4xy + 12y + 8z - 16
<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0
<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0
Dấu = xảy ra khi
\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)
thay xy=1 và x+y=0, ta có:
\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)
Ta có: x.y = 15
=> x = \(\frac{15}{y}\)
Ta có x + y = -8
\(\frac{15}{y}\)+ y= 8
=> 15 + \(y^2\)= 8y => \(y^2-8y+15=0\)
=> y = 3 hoặc y = 5
=> y = 3 => x=5
y=5 => x=3
\(x^2+y^2=3^2+5^2=34\)
\(x^2+y^2=x^2+2xy+y^2=\left(x+y\right)^2-2xy\)
Vì x+y=-8,xy=15 nên:
\(\left(x+y\right)^2+2xy=\left(-8\right)^2+2.15=34\)
Có :
\(\left(x+y\right)^2=11^2\)
\(x^2+y^2+2xy=121\)
\(x^2+y^2=121-2.21=121-42=79\)
\(\Rightarrow3x^2+3y^2=3\left(x^2+y^2\right)=3.79=237\)
Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2=x^2+2.21+y^2=11^2=121\)
\(\Rightarrow x^2+y^2=121-2.21=79\)
\(\Rightarrow3x^2+3y^2=3\left(x^2+y^2\right)=3.79=237\)
Vậy \(3x^2+3y^2=237\)
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
Ta có:(x4+y4)=(x2+y2)2-2.x2.y2
=(x2+y2)2-2.xy.xy
=152-2.6.6
=225-72
=153
x4+y4
=[(x2)2+2x2y2+(y2)2]-2x2y2
=(x2+y2)-2x2y2
=(x2+y2)-2xy.xy
Ma x2+y2=15 va xy=6
=152-2.6.6
=225-72
=153
Nho k nha