\(x^4+y^4\)

Biết \(x^2+y^2=15\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Ta có:(x4+y4)=(x2+y2)2-2.x2.y2

                    =(x2+y2)2-2.xy.xy

                     =152-2.6.6

                     =225-72

                     =153

11 tháng 12 2016

x4+y4

=[(x2)2+2x2y2+(y2)2]-2x2y2

=(x2+y2)-2x2y2

=(x2+y2)-2xy.xy

Ma x2+y2=15 va xy=6

=152-2.6.6

=225-72

=153

Nho k nha

17 tháng 5 2017

* Với M

Ta có M= x2+y2 = x2+y2+2xy-2xy=(x+y)- 2xy= (-9)2 - 2.18 = 81- 36 = 45

* Với N 

Ta có M = x4 + y4 = (x2)2 + (y2)2 + 2(xy)2 - 2(xy)2 = (x2+y2)2 + 2 (xy)2= 452 + 2. 182= 2673

* Với T 

Ta có T = x2 - y2  => chịu

14 tháng 7 2018

x^2 +y^2 =x^2 + 2xy + y^2 - 2xy

(x+y)^2 - 2xy

(-9)^2-2*18

81 - 36

45

2 tháng 9 2017

X=2007 đúng 100%

25 tháng 1 2017

z=X=y=1

25 tháng 1 2017

x2 + y2 + z2 = xy + 3y + 2z - 4

<=> 4x2 + 4y2 + 4z2​ = 4xy + 12y + 8z - 16

<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0

<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0

Dấu = xảy ra khi 

\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)

2 tháng 1 2019

\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)

thay xy=1 và x+y=0, ta có: 

\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)

3 tháng 1 2019

Easy mà:

Ta có: \(\left|x+y\right|\ge0\forall x,y\)  mà \(\left|x+y\right|\) nhỏ nhất nên \(\left|x+y\right|=0\Leftrightarrow x=-y\)

Thay vào M,ta có; \(M=2\left(-y\right)^2+2y^2+3.1-\left(-y\right)-y-3\)  (Thay x bởi -y)

\(=4y^2+3-3=4y^2\)

26 tháng 10 2016

Ta có: x.y = 15

=> x = \(\frac{15}{y}\)

Ta có x + y = -8

\(\frac{15}{y}\)+ y= 8

=> 15 + \(y^2\)= 8y => \(y^2-8y+15=0\)

=> y = 3 hoặc y = 5

=> y = 3 => x=5

y=5 => x=3

\(x^2+y^2=3^2+5^2=34\)

22 tháng 9 2019

\(x^2+y^2=x^2+2xy+y^2=\left(x+y\right)^2-2xy\)

Vì x+y=-8,xy=15 nên:

\(\left(x+y\right)^2+2xy=\left(-8\right)^2+2.15=34\)

28 tháng 12 2016

Có :

\(\left(x+y\right)^2=11^2\)

\(x^2+y^2+2xy=121\)

\(x^2+y^2=121-2.21=121-42=79\)

\(\Rightarrow3x^2+3y^2=3\left(x^2+y^2\right)=3.79=237\)

22 tháng 3 2017

Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2=x^2+2.21+y^2=11^2=121\)

\(\Rightarrow x^2+y^2=121-2.21=79\)

\(\Rightarrow3x^2+3y^2=3\left(x^2+y^2\right)=3.79=237\)

Vậy \(3x^2+3y^2=237\)

14 tháng 11 2019

a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)

\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)

\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)

b) Ta có: \(x+y=\frac{1}{40}\)

\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)

\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)

\(\Rightarrow x^2+y^2=\frac{41}{1600}\)

Vậy \(N=\frac{41}{1600}\)