
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\x\ne0\end{cases}}\)
a) \(B=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}\right):\frac{3x^2}{x+3}\)
\(\Leftrightarrow B=\left(\frac{3-x}{x+3}\cdot\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(\Leftrightarrow B=\frac{\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{3x^2}\)
\(\Leftrightarrow B=-\frac{x+3}{3x^2}\)
b) Khi \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=1\)
\(\Leftrightarrow B=-\frac{1+3}{3.1^2}=-\frac{4}{3.}\)
c) Để B > 0
\(\Leftrightarrow-\frac{x+3}{3x^2}>0\)
\(\Leftrightarrow\frac{x+3}{3x^2}< 0\)
\(\Leftrightarrow x+3< 0\) (Do 3x2 > 0; loại giá trị = 0)
\(\Leftrightarrow x< -3\)
Vậy để \(B>0\Leftrightarrow x< -3\)

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\) ĐKXD: \(x\ne\pm2,x\ne0,x\ne3\)
\(\Leftrightarrow\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{2+x}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(\Leftrightarrow\left(\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x-3}{x\left(2-x\right)}\right)\)
\(\Leftrightarrow\left(\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\right)\cdot\left(\frac{x\left(2-x\right)}{x-3}\right)\)
\(\Leftrightarrow\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(\Leftrightarrow\frac{4x^2}{x-3}\)
b, Để A>0 thì \(\frac{4x^2}{x-3}>0\)
\(\Rightarrow4x^2>0\)
\(\Rightarrow x>0\)
c, Ta có
\(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\left(l\right)\end{cases}}}\)
Với \(x=11\Rightarrow\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
`-3x^2+4x+15=0`
`<=>3x^2-4x-15=0`
`<=>3x^2-9x+5x-15=0`
`<=>3x(x-3)+5(x-3)=0`
`<=>(x-3)(3x+5)=0`
`<=>` \(\left[ \begin{array}{l}x-3=0\\3x+5=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=3\\x=-\dfrac53\end{array} \right.\)
Vậy `S={3,-5/3}`