Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) [ (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) phần 1/2 - 1/3 + 1/4 - 1/5 ] : (1/4 - 1/6)
= [ (1/6 : 1/6) + (1/10 : 1/10) - (1/15 : 1/15) phần 30/60 - 20/60 + 15/60 - 12/60 ] : (3/12 - 2/12)
= [ 1 + 1 - 1 phần 13/60 ] : 1/12
= [ 1 : 13/60 ] x 12
= 60/13 x 12
=720/ 13
b) (3/20 + 1/2 - 1/15) x 12/49 phần 3 và 1/3 + 2/9
= (9/60 + 30/60 - 4/60) x 12/49 phần 10/3 + 2/9
= 7/12 x 12/49 phần 30/9 + 2/9
= 1/7 : 32/9
= 1/7 x 9/32
= 9/224
1 x 3 x 5 + 2 x 6 x 10 + 3 x 9 x 15/3 x 5 x 12 + 6 x 10 x 24 + 9 x 15 x 36 = 15 + 120 + 8100 + 1440 + 4860 = 14535
\(\frac{1\times3\times5+2\times6\times10+3\times9\times15}{3\times5\times12+6\times10\times24+9\times15\times36}\)
\(=\frac{1\times3\times5\times\left(1+2^3+3^3\right)}{3\times5\times12\times\left(1+2^3+3^3\right)}\)\(=\frac{1}{12}\)
B=3/2x4/3x...........x2018/2017
=3x4x5x...........x2018/2x3x2x2x............x2017
=2x2018
=4036
A,C tương tự
a, 200 - 3( x - 16 ) = 20
3( x - 16 ) = 200 - 20 = 180
x - 16 = 180 : 3 = 60
x = 60 + 16 = 76
b, 5 + 10 + 15 + .............. + 95 + 100 + 105 = 1200
c, x + ( 99 - 97 + 95 - 93 + ............ + 7 - 5 + 3 - 1 ) = 100
x + ( 2 . 25 ) = 100
x + 50 = 100
x = 100 - 50 = 50
****, thks
\(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\times\left(1-\dfrac{1}{6}\right)\times\dots\times\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\) (sửa đề)
\(=\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\times\dfrac{5}{6}\times\dots\times\dfrac{98}{99}\times\dfrac{99}{100}\)
\(=\dfrac{2\times3\times4\times5\times\dots\times98\times99}{3\times4\times5\times6\times\dots\times99\times100}\)
\(=\dfrac{2}{100}\)
\(=\dfrac{1}{50}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)