Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^{10}-25x^9+25x^8-25x^7+...-25x^3+25x^2-25x+25\)
Ta thấy : \(x=24\Rightarrow x+1=25\)
\(\Rightarrow M=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(M=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow M=1\)
Vậy \(M=1\left(tạix=24\right)\)
M=x
10
−25x
9
+25x
8
−25x
7
+...−25x
3
+25x
2
−25x+25
Ta thấy :
x
=
24
⇒
x
+
1
=
25
x=24⇒x+1=25
⇒
M
=
x
10
−
(
x
+
1
)
x
9
+
(
x
+
1
)
x
8
−
(
x
+
1
)
x
7
+
.
.
.
−
(
x
+
1
)
x
3
+
(
x
+
1
)
x
2
−
(
x
+
1
)
x
+
(
x
+
1
)
⇒M=x
10
−(x+1)x
9
+(x+1)x
8
−(x+1)x
7
+...−(x+1)x
3
+(x+1)x
2
−(x+1)x+(x+1)
M
=
x
10
−
x
10
−
x
9
+
x
9
+
x
8
−
x
8
−
x
7
+
.
.
.
−
x
4
−
x
3
+
x
3
+
x
2
−
x
2
−
x
+
x
+
1
M=x
10
−x
10
−x
9
+x
9
+x
8
−x
8
−x
7
+...−x
4
−x
3
+x
3
+x
2
−x
2
−x+x+1
⇒
M
=
1
⇒M=1
Vậy
M
=
1
(
t
ạ
i
x
=
24
)
M=1(tạix=24)
x10 = 25x8
⇒ x10 − 25x8 = 0
⇒ x8.(x2 − 25) = 0
Suy ra x8 = 0 hoặc x2 - 25 = 0.
Do đó x = 0 hoặc x = 5 hoặc x = -5.
Vậy x ∈ {0; 5; −5}.
Thay x vào N ta có : N = 25.(-1/5)^2 +10.-1/5 +1
= 25.1/25 + (-10/5) +1
= 1 + (-2) +1
=0
Chứng minh rằng các giá trị của biểu thức sau luôn dương với mọi giá trị của biến:
A = 25x2 - 20x + 7
\(A=25x^2-20x+7\)
\(\Rightarrow A=\left(5x\right)^2-2.2.5x+2^2-2^2+7\)
\(A=\left(5x-2\right)^2+3\ge3\)
Vậy \(A\ge3\)với mợi GT x
Lời giải:
$M=(x^{10}-24x^9)-(x^9-24x^8)+(x^8-24x^7)-(x^7-24x^6)+(x^6-24x^5)-(x^5-24x^4)+(x^4-24x^3)-(x^3-24x^2)+(x^2-24x)-(x-24)+1$
$=x^9(x-24)-x^8(x-24)+x^7(x-24)-.....+x(x-24)-(x-24)+1$
$=(x-24)(x^9-x^8+x^7-...+x-1)+1$
$=0.(x^9-x^8+....+x-1)+1=1$