Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 100 + 98 + 96 + ... + 2 - 9 7 - 95 - .. -1
= 100 + (98 - 97) + (96-95) + ... + + ... + (2 - 1)
= 100 + 1 + 1 + 1 +.. +1
= 100 + 1 x49
= 100 + 49
= 149
b , 1 + 2 - 3 - 4 + 5 + 6 - .... -299 - 330 +301 + 302
=( 1 + 2 - 3) + ( -4 + 5 + 6 -7 ) +... +(298 - 299 -300 +301 ) + 302
= 0 + 0 + .. + 0 + 302
= 302
c) 2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3
=24.31+24.42+24.27
=24.(31+42+27)
=24.100
=2400
d)
=36x(28+82)+64x(69+41)
=36x110+64x110
=110x(26+64)
=110x100
=11000
d) dãy tính trên có số số tự nhiên là: (99-1):2+1=50(số)
99-97+95-93+91-89+...+7-5+3-1(50:2=25 cặp)
(99-97)+(95-93)+(91-89)+...+(7-5)+(3-1) (25 cặp)
2+2+2+2+2+...+2+2(25 số 2)
2x25=50
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
A) 2x31x12+4x6x42+8x27x3
= 2x12x31+4x6x42+8x3x27
=24x31+24x42+24x27
=24x(31+42+27)
=24x100
=2400
B)36x28+36x82+64x69+64x41
= 36x(28+82) + 64x(69+41)
= 36x110 + 64x110
= 110x (36+64)
= 110x 100
= 11000
C) Số các số hạng của S là : (100 - 1) / 1 + 1 = 100 (số)
Tổng S = (100+1)x100/2 = 5050
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
\(\frac{1.2.3.4....30.31}{2.2.2.3.2.3.....2.32}=\frac{2.3.4....30.31}{2^{31}\left(2.3...31\right).32}=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^{-36}\)
Vậy x=-36
ta có \(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}.....\frac{30}{62}\cdot\frac{31}{64}=2^x\)
=>\(\frac{1.2.3.4....31}{2\cdot2\cdot2\cdot3\cdot2\cdot3.....\cdot2\cdot3\cdot2}=\frac{2\cdot3\cdot4...30.31}{2^{31}\left(2\cdot3\cdot4...31\right)32}=\frac{1}{2^{31}\cdot2^5}=\frac{1}{2^{36}}=2^{-36}\)
\(=>x=-36\)
Bài 3 :
A = 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33
=> A = ( 33 + 26 ) . 8 : 2 = 236
Vậy A = 236
\(\text{#Hok tốt!}\)
a) 2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3
= 24 . 31 + 24 . 42 + 24 . 27
= 24 . ( 31 + 42 + 27 )
= 24 . 100
= 2400
\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}\\ =\dfrac{1.2.3.4.5.....30.31}{4.6.8.10.12.....62.64}\\ =\dfrac{1.2.3.4.5.....30.31}{2.2.3.2.4.2.5.2.6.2.....31.2.32.2}\\ =\dfrac{2.3.4.5.....30.31}{\left(2.3.4.5.6...31\right).32.2.2.2.2.2.....2.2}\\ =\dfrac{1}{32.2.2.2.2.2.....2.2\left(31so2\right)}\\ =\dfrac{1}{2^5.2^{31}}=\dfrac{1}{2^{36}}\)
Đáp án C bạn nhé