Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,R(x)=P(x)+Q(x)=-4x\(^4\)-2x+x\(^2\)+3x\(^3\)+1-2-3x\(^3\)+2x+x\(^5\)+5x\(^4\)
=x\(^5\)+(-4x\(^4\)+5x\(^4\))+(3x\(^3\)-3x\(^3\))+x\(^2\)+(-2x+2x)+(1-2)
=x\(^5\)+x\(^4\)+x\(^2\)-1
R(-1)=(-1)\(^5\)+(-1)\(^4\)+(-1)\(^2\)-1
=0
Ta có :
\(C=A+B=\left(3x^4+2x^2-5x^3+x-5\right)+\left(-3x^4-x^2+x+7+5x^3\right)\)
\(C=A+B=3x^4+2x^2-5x^3+x-5-3x^4-x^2+x+7+5x^3\)
\(C=A+B=\left(3x^4-3x^4\right)+\left(2x^2-x^2\right)+\left(-5x^3+5x^3\right)+\left(x+x\right)+\left(-5+7\right)\)
\(C=A+B=x^2+2x+2\)
Lại có :
\(C=x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge0+1=1>0\)
Vậy \(C=A+B\) luôn có giá trị dương với mọi giá trị của x
Chúc bạn học tốt ~
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)
=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxB = 5/3 khi x = 1/2
b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40
P = 2x(x + y - 1) + y2 + 1
P = 2x2 + 2xy - 2x + y2 + 1
P = (x2 + 2xy + y2) + (x2 - 2x + 1)
P = (x + y)2 + (x - 1)2 \(\ge\)0
=> P luôn nhận giá trị không âm với mọi x;y
a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
hay \(B\le\frac{5}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:
\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)
- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\); \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)
hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )
\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3
TH1 : Ta thay đa thức trên có x = -1
\(3.\left(-1\right)^2+5=3.1+5=8\)
TH2 : Ta thay đa thức trên có x = 0
\(3.0^2+5=3.0.5=0\)
TH3 : Ta thay đa thức trên có x = 3
\(3.3^2+5=3.9+5=27+5=32\)
Ta KL đc : R luôn dương với mọi giá trị x