Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
Ta sẽ đặt x^2=a;y^2=b(với Đk:a,b không âm) để giảm số mũ xuống
Từ giả thiết suy ra a+b=2
=>3x^4+5x^2y^2+2y^4+2y^2
=3a^2+5ab+2b^2+2b
=(3a^2+3ab)+(2ab+2b^2)+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4*2+2*2=12
a: Ta có: M+N
\(=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2+\dfrac{-2}{3}x^2y^2\)
\(=-2xy^2+\dfrac{7}{2}x^2y-\dfrac{5}{3}x^2y^2\)
b: Ta có: N-Q=M
nên \(Q=N-M\)
\(=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2\)
\(=\dfrac{-5}{2}x^2y+\dfrac{1}{3}x^2y^2\)
a) \(M+N=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2=\dfrac{7}{2}x^2y-2xy^2-\dfrac{5}{3}x^2y^2\)b) \(N-Q=M\Rightarrow Q=N-M=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2\)c) \(Q=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2=-\dfrac{5}{2}.\left(-1\right)^2.\dfrac{1}{2}+\dfrac{1}{3}.\left(-1\right)^2.\left(\dfrac{1}{2}\right)^2=-\dfrac{7}{6}\)
Từ giả thiết suy ra a+b=2
=>3x\(^4\)+5x\(^2\)y\(^2\)+2y\(^4\)+2y\(^2\)
=3a\(^2\)+5ab+2b\(^2\)+2b
=(3a\(^2\)+3ab)+(2ab+2b\(^2\))+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4.2+2.2=12
Vậy biểu thức đó bằng 12
Từ \(x^2+y^2=2\) suy ra \(y^2=2-x^2\)
thế \(y^2=2-x^2\) vào M tính được M=8
Bạn giải thích cụ thể cho mk đc ko bạn