K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2x^3+3x^2y-2xy-3y^2+2016\)

\(=x^2\left(2x+3y\right)-y\left(2x+3y\right)+2016\)

\(=x^2\cdot0-y\cdot0+2016\)

=2016

11 tháng 5 2021

`2x^3+3x^2y-2xy-3y^2+2016`
`=x^2(2x+3y)-y(2x+3y)+2016`
Mà `2x+3y=0`
`=>2x^3+3x^2y-2xy-3y^2+2016=0+0+2016=2016`

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

17 tháng 5 2016

1. G= 3x2y - 2xy2 + x3y3 + 3xy- 2x2y - 2x3y3

G = x2y + xy2 - x3y3 = xy (x + y -x2y2)  . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)* 4) = 496

 

17 tháng 5 2016

a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x-3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2 

A-B= -( -2x+xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4

Tại x = -1, y =2

A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4

B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

\(\Rightarrow x^3+x^2y-2x^2-xy-y^2+2y+y+x+2020\)

\(x^2.\left(x+y-2\right)-y\left(x+y-2\right)+y+x+2020\)(1)

Thay x+y-2=0 vào (1) , ta được :

\(x^2.0-y.0+y+x+2020\\ =0+y+x+2020\)

\(=x+y+2022-2\\ =\left(x+y-2\right)+2022\\ \)(2)

Thay x+y-2 vào (2), ta được

\(=0+2022=2022\)

_ Tham khảo thôi ậ, nếu sai thì mong mn thông cảm_

_# yum #_

Ta có:

M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)

= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7

= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7

= 3x^2y^2 + 2y^2 + 7x^4 + 7

x^2≥0;y^2≥0⇒3x^2y^2≥0​ (1)

y^2≥0⇒2y^2≥0(2)

x4≥0⇒7x4≥0 (3)

7 > 0 (4)

Từ (1), (2)(3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0

Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0