Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2x-y+3y-1\)
\(B=-2x^2+3y^2-5x+y+3\)
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)
\(=3x^2-3y+3x+y-4\)
b) tại x=1 ; x=-2 ta có:
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)
\(A=1-2+2-6-1=-6\)
Vậy -6 là giá trị của đa thức A tại x=1 y=-2
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=3x^2-3y^2+3x+2y-4\)
b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)
\(=1-2+2-6-1\)
\(=-6\)
(\(\frac{-2}{3}\)x\(^3\)y\(^2\))(\(\frac{1}{2}\)x\(^2\)y\(^5\))
a: \(P=\dfrac{-2}{3}\cdot\dfrac{1}{2}x^3y^2\cdot x^2y^5=\dfrac{-1}{3}x^5y^7\)
Hệ số là -1/3
Phần biến là \(x^5;y^7\)
b: Khi x=-1 và y=1 thì \(A=\dfrac{-1}{3}\cdot\left(-1\right)^5\cdot1^7=\dfrac{1}{3}\)
a: \(P=\dfrac{-1}{3}x^5y^7\)
b: Khi x=-1 và y=1 thì P=1/3
a, P= \(\left(\dfrac{-2}{3}x^3y^2\right)\left(\dfrac{1}{2}x^2y^5\right)\)
= \(\dfrac{-2}{3}x^3y^2.\dfrac{1}{2}x^2y^5\)
= \(\dfrac{-1}{3}x^5y^7\)
b, tại x= -1 y=1 ta co:
P= \(\dfrac{-1}{3}\left(-1\right)^5.1^7\) = 1/3