Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
Vì \(x=99\Rightarrow98=x-1\)
Thay \(98=x+1\)vào biểu thức A , ta có :
\(A=x^7-\left(x-1\right)x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(\Rightarrow A=x^7-x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(\Rightarrow A=x+1=99+1=100\)
\(A=x^3-3x^2+3x-1\\ A=x^3-3x^2.1+3x.1^2-1^3\\ A=\left(x-1\right)^3\)
Thay x=101 vào biểu thức trên ta được kết quả là 100^3= 1000000
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x+ 2)2
Với x = 98: (98+ 2)2 =1002 = 10000
b) x3 + 3x2 + 3x + 1 = x3 + 3 . 1 . x2 + 3 . x .12+ 13 = (x + 1)3
Với x = 99: (99+ 1)3 = 1003 = 1000000
áp dụng hằng đẳng thức thứ 1
a) \(\left(x+2\right)^2\)
Thay x = 98 :
\(\left(98+2\right)^2\)\(=100^2=10000\)
Áp dụng hằng đẳng thức thứ 4
\(\left(x+1\right)^3\)
Thay x = 99
\(\left(99+1\right)^2\)\(=100^2=10000\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
a:
Đặt A=x+x^2+x^3+...+x^99+x^100
Khi x=-1 thì A=(-1)+(-1)^2+(-1)^3+...+(-1)^100
=(-1+1)+(-1+1)+...+(-1+1)
=0
b: Đặt B=x^2+x^4+...+x^100
Khi x=-1 thì B=(-1)^2+(-1)^4+...+(-1)^100
=1+1+...+1
=50