K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

minh ghi nhầm, dấu căn dưới mẫu là bao trùm luôn -7x+3 nhen

8 tháng 12 2019

\(x=1+\sqrt[3]{2}+\sqrt[3]{4}=\frac{1}{\sqrt[3]{2}-1}.\)

\(\Rightarrow\sqrt[3]{2}x=x+1\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

\(\Rightarrow\hept{\begin{cases}x^3+x^2+5x+3=4\left(x+1\right)^2\\x^3-2x^2-7x+3=\left(x-2\right)^2\end{cases}}\)

Khi đó:

\(P=\frac{2\left(x+1\right)-6}{x-2}=2\)(do x>0)

9 tháng 7 2018

mình ghi nhầm, dấu căn dưới mẫu là bao trùm luôn -7x+3 nhen

9 tháng 7 2018

Bấm máy

Thí dụ ra 2, chứng minh tử=2.mẫu là xong

18 tháng 8 2019

chỉ được một thôi mà

NV
18 tháng 9 2019

\(x-1=\sqrt[3]{4}+\sqrt[3]{2}\)

\(\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)

\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

\(\Rightarrow x^3=3x^2+3x+1\)

\(P=\frac{\sqrt{3x^2+3x+1+x^2+5x+3}-6}{\sqrt{3x^2+3x+1-2x^2-7x+3}}=\frac{\sqrt{4\left(x+1\right)^2}-6}{\sqrt{\left(x-2\right)^2}}\)

\(=\frac{2x-4}{x-2}=2\)

@Vũ Minh Tuấn @Nguyễn Việt Lâm @Lê Thị Thục Hiền

17 tháng 6 2021

\(x=1+1.\sqrt[3]{2}+\sqrt[3]{2}^2=\dfrac{\sqrt[3]{2}^3-1^3}{\sqrt[3]{2}-1}=\dfrac{1}{\sqrt[3]{2}-1}\)

\(\Leftrightarrow\dfrac{1}{x}+1=\sqrt[3]{2}\)

\(\Leftrightarrow\left(x+1\right)^3=2x^3\Leftrightarrow x^3-3x^2-3x-1=0\).

Do đó \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)

\(M=\dfrac{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(4x^2+8x+4\right)}-6}{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(x^2-4x+4\right)}}\)

\(M=\dfrac{\sqrt{\left(2x+2\right)^2}-6}{\sqrt{\left(x-2\right)^2}}=\dfrac{2x+2-6}{x-2}=2\). (Do \(x>2\))

17 tháng 6 2021

Tại sao x>2 vậy ạ?