Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5^x+5^{x+2}=650\\ \Rightarrow5^x+5^x.5^2=650\\ \Rightarrow5^x\left(1+5^2\right)=650\\ \Rightarrow5^x.26=650\\ \Rightarrow5^x=25\\ \Rightarrow5^x=5^2\\ \Rightarrow x=2\)
\(b,\left(4x+1\right)^2=25.9\\\Rightarrow\left(4x+1\right)^2=225\\ \Rightarrow\left[{}\begin{matrix}4x+1=15\\4x+1=-15\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-4\end{matrix}\right.\)
\(c,2^x+2^{x+3}=144\\ \Rightarrow2^x+2^x.2^3=144\\ \Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:\left(1+2^3\right)\\ \Rightarrow2^x=16\\ \Rightarrow2^x=2^4\\ \Rightarrow x=4\)
\(d,3^{x+2}=9^{x+3}\\ \Rightarrow3^{x+2}=\left(3^2\right)^{x+3}\\ \Rightarrow3^{x+2}=3^{2x+6}\\ \Rightarrow x+2=2x+6\\ \Rightarrow x-2x=6-2\\ \Rightarrow-x=4\\ \Rightarrow x=-4\)
\(e,x^{15}=x^2\\ \Rightarrow x^{15}-x^2=0\\ \Rightarrow x^2\left(x^{13}-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\x^{13}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a: =>5^x+5^x*25=650
=>5^x*26=650
=>5^x=25
=>x=2
b: =>4x+1=15 hoặc 4x+1=-15
=>4x=-16 hoặc 4x=14
=>x=7/2 hoặc x=-8
c: =>2^x*9=144
=>2^x=16
=>x=4
d: =>2x+2=2x+6
=>2=6(loại)
e: =>x^2(x^13-1)=0
=>x=0 hoặc x=1
f)
`(2x+1)^3=343`
`(2x+1)^3=7^3`
`=>2x+1=7`
`2x=7-1`
`2x=6`
`x=6:2`
`x=3`
g)
`(x-1)^3 =125`
`(x-1)^3 =5^3`
`=>x-1=5`
`x=6`
h)
`2^(x+2)-2^x=96`
`2^x *2^2 -2^x =96`
`2^x (2^2 -1)=96`
`2^x *3=96`
`2^x =32`
`2^x =2^5`
`=>x=5`
i)
`(x-5)^4 =(x-5)^6` (`x>=5`)
`(x-5)^6 -(x-5)^4 =0`
`(x-5)^4 [(x-5)^2 -1]=0`
`=>x-5=0` hoặc `(x-5)^2 -1=0`
`<=>x=5` hoặc `(x-5)^2 =1`
`<=>x=5` hoặc `x-5=1` hoặc `x-5=-1`
`<=>x=5` hoặc `x=6` hoặc `x=4`
j)
`720:[41-(2x-5)]=2^3 *5`
`720:[41-(2x-5)]=8*5`
`720:[41-(2x-5)]=40`
`41-(2x-5)=720:40`
`41-(2x-5)=18`
`2x-5=41-18`
`2x-5=23`
`2x=28`
`x=14`
1: \(\left(-5\right)+8-7=8+\left(-5-7\right)\)
=-12+8
=-4
2: \(\left(-8\right)+2+8=\left(-8+8\right)+2=0+2=2\)
3: \(\left(-1\right)+3+1\)
\(=\left(-1+1\right)+3\)
=0+3
=3
4: \(\left(-6\right)+8-14\)
\(=\left(-6-14\right)+8\)
=-20+8
=-12
5: \(\left(-4\right)+3-7\)
\(=\left(-4-7\right)+3\)
=-11+3
=-8
6: \(\left(-4\right)+5-2\)
\(=\left(-4-2\right)+5\)
=-6+5
=-1
a) x + 218 - x - 132
= 86 (với mọi x R)
b) y - 25 - x + 30 + x
= y + 5 (1)
Thay y = -21 vào (1) ta có:
-21 + 5 = -16
c) -a - 18 + c + 18 - c + b
= -a + b (2)
Thay a = -47; b = 23 vào (2) ta có:
-(-47) + 23 = 70
d) Thay a = -5; b = 7; c = -8 vào biểu thức, ta có:
-5 - 7 + (-8) = -20
a: \(\left(-35\right)+23-\left(-35\right)-47\)
\(=\left(-35\right)+23+35-47\)
\(=\left(-35+35\right)+\left(23-47\right)\)
\(=-24+0=-24\)
c: \(37-\left(-43\right)+\left(-85\right)-\left(-30\right)+15\)
\(=37+43-85+30+15\)
\(=\left(37+43\right)+30-\left(85-15\right)\)
\(=80+30-70\)
=80-40
=40
e: \(-64+\left(-111\right)+64+71\)
\(=-64-111+64+71\)
\(=\left(-64+64\right)+\left(-111+71\right)\)
=-40+0
=-40
g: \(52-\left(-15\right)+\left(+21\right)+\left(-30\right)-28-\left(+19\right)\)
\(=52+15+21-30-28-19\)
\(=\left(52+15-28-19\right)+\left(21-30\right)\)
\(=\left(67-47\right)-9\)
=20-9
=11
ta rút gọn và nhân thì ta được (4\2-7\12-9\15):(4\3-1\2-5\3)
=(120\60-35\60-36\60):(8\6-3\6-10\6)
=49\60:-5\6
= 49\-300
chúc bạn học tốt !
\(a,x^{15}=x\\ \Rightarrow x^{15}-x=0\\ \Rightarrow x\left(x^{14}-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^{14}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(thoaman\right)\\x=1\left(thoaman\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
\(b,\left(2x+1\right)^3=125\\ \Rightarrow\left(2x+1\right)^3=5^3\\ \Rightarrow2x+1=5\\ \Rightarrow2x=4\\ \Rightarrow x=2\left(thoaman\right)\)
\(c,\left(x-5\right)^4=\left(x-5\right)^6\\ \Rightarrow\left(x-5\right)^4-\left(x-5\right)^6=0\\ \Rightarrow\left(x-5\right)^4\left(1-\left(x-5\right)^2\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\\x-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\left(thoaman\right)\)
\(d,x^{10}=x^1\\ \Rightarrow x^{10}-x^1=0\\ \Rightarrow x\left(x^9-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^9-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\left(thoaman\right)\)
\(e,2^x-15=17\\ \Rightarrow2^x=17+15\\ \Rightarrow2^x=32\\ \Rightarrow2^x=2^5\\ \Rightarrow x=5\left(thoaman\right)\)
\(f,\left(7x-11\right)^3=2^5.5^2+200\\ \Rightarrow\left(7x-11\right)^3=32.25+200\\ \Rightarrow\left(7x-11\right)^3=800+200\\ \Rightarrow\left(7x-11\right)^3=1000\\ \Rightarrow\left(7x-11\right)^3=10^3\\ \Rightarrow7x-11=10\\ \Rightarrow7x=21\\ \Rightarrow x=21:7=3\left(thoaman\right)\)
@seven
a: x^15=x
=>x^15-x=0
=>x(x^14-1)=0
=>x=0 hoặc x^14-1=0
=>x=0 hoặc x^14=1
=>x=0;x=1;x=-1
b: =>2x+1=5
=>2x=4
=>x=2
c: =>(x-5)^4[(x-5)^2-1)]=0
=>(x-5)(x-6)(x-4)=0
=>\(x\in\left\{4;5;6\right\}\)
d: x^10=x
=>x^10-x=0
=>x(x^9-1)=0
=>x=0 hoặc x=1
e: 2^x-15=17
=>2^x=32
=>x=5
f: =>(7x-11)^3=1000
=>7x-11=10
=>7x=21
=>x=3
e) Thay x = -3; y = 7; z = -10 vào biểu thức đã cho, ta có:
-3 + 7 + (-10) = -6
f) Thay x = 2; y = -5; z = -8 vào biểu thức, ta có:
-2 - (-5) - (-8) = 13
g) Thay a = -5; b = 9; c = -12 vào biểu thức, ta có:
-5 - 9 - (-12) = -2