K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

a) Thế x và y ta có:

\(-2.\left(-3\right)-5+11+3.\left(-3\right)\)

\(=6-5+11-9=3\)

b) Thế x và y ta có:

\(2.5-3.\left(-3\right)+5\left(5-\left(-3\right)\right)+15\)

\(=10+9+5\left(5+3\right)+15\)

\(=10+9+40+15=74\)

c) Thế x và y ta có:

\(4.\left(-3\right)-4\left(-3-2.5\right)-7\left(5-2\right)\)

\(=-12-4.\left(-13\right)-7.3\)

\(=-12+52-21=19\)

13 tháng 1 2019

Các bn giúp mình với mình đang cần gấp

14 tháng 1 2019

nhiều quá bạn ơi , mk nghĩ bạn nên tách ra rồi hãy đăng lên

3 tháng 1

a) Ta có: \(\left|x+5\right|\ge0\forall x\)

\(\Rightarrow\left|x+5\right|+2023\ge2023\forall x\)

\(\Rightarrow A\ge2023\forall x\)

Dấu \("="\) xảy ra khi: \(x+5=0\Leftrightarrow x=-5\)

Vậy \(Min_A=2023\) khi \(x=-5\).

b) Ta có: \(\left\{{}\begin{matrix}\left|2x+6\right|\ge0\forall x\\\left|y+3x\right|\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left|2x+6\right|+\left|y+3x\right|\ge0\forall x,y\)

\(\Rightarrow\left|2x+6\right|+\left|y+3x\right|+25\ge25\forall x,y\)

\(\Rightarrow B\ge25\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}2x+6=0\\y+3x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\y=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-6:2=-3\\y=-3\cdot\left(-3\right)=9\end{matrix}\right.\)

Vậy \(Min_B=25\) khi \(x=-3;y=9\).

c) Ta có: \(\left\{{}\begin{matrix}\left|12-3x\right|\ge0\forall x\\\left|-y-4x\right|\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left|12-3x\right|+\left|-y-4x\right|\ge0\forall x,y\)

\(\Rightarrow\left|12-3x\right|+\left|-y-4x\right|-12\ge-12\forall x,y\)

\(\Rightarrow C\ge-12\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}12-3x=0\\-y-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=12\\y=-4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12:3=4\\y=-4\cdot4=-16\end{matrix}\right.\)

Vậy \(Min_C=-12\) khi \(x=4;y=-16\).

\(\mathit{Toru}\)

1 tháng 6 2017

1)\(y=\frac{x^2+3x+7}{x+3}=\frac{x\left(x+3\right)+7}{x+3}=x+\frac{7}{x+3}\)= > x +3 thuoc\(U_{\left(7\right)}=\left\{1;-1;7;-7\right\}\)

                                                                                                                  x thuoc \(\left\{-2;-4;3;-11\right\}\)

 2)\(y=\frac{4x+3}{2x+6}=\frac{4x+12-8}{2x+6}=\frac{2\left(2x+6\right)-8}{2x+6}=2-\frac{8}{2x+6}\)   =>2x+6 thuoc 

\(U_{\left(8\right)}=\left\{1;-1;2;-2;4;-4;8;-8\right\}\) 

=>x thuoc \(\left\{-2;-4;-1;-5;1;-7\right\}\)

1 tháng 6 2017

4)\(y=\frac{4x+1}{3x-1}\)

\(3y=\frac{12x+3}{3x-1}=\frac{12x-4+7}{3x-1}=\frac{4\left(3x-1\right)+7}{3x-1}=4+\frac{7}{3x-1}\)

3x+1 thuoc {1;-1;7;-7}

3x thuoc {0;-2;6;-8}

x thuoc {0;2}

28 tháng 2 2020

1.Tìm x,y thuộc Z biết

1,x+(-45)=(-62)+17

2,x+29=|-43|+(-43)

3,43+(9-21)=317-(x+317)

4,|x|+|-4|=7

5,|x|+|y|=0

6,(15-x)+(x-12)=7-(-5+x)

7,(2x-5)^2=9

8,(2x+6).(x-9)=0

9,(1-3x)^3=-8

10,3x+4y-xy=15

3.Tìm x+y biết

|x|=5

|x|=7

4.Tìm giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau (x,y thuộc Z)

A=|x-3|+1

B=3-|x+1|

C=|x-5|+|y+3|+7

9 tháng 8 2018

nhớ k đấy mình nhanh nhất

9 tháng 8 2018

mình nhầm