Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x+ 2)2
Với x = 98: (98+ 2)2 =1002 = 10000
b) x3 + 3x2 + 3x + 1 = x3 + 3 . 1 . x2 + 3 . x .12+ 13 = (x + 1)3
Với x = 99: (99+ 1)3 = 1003 = 1000000
a). x2+4x+4=(x+2)2 ta thay x=98 vào hằng đẳng thức ta được:(98+2)2=1002=10000
b).x3+3x2+3x+1=(x+1)3 ta thay x=99 vào hđt ta được (99+1)3=1003=1000000
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
A=(2x-1)^3
ta thay x=1/2 vào biểu thức A, có:
A=(2*1/2-1)^3
A=1^3=1
b, (x+1)^3
Ta thay x=99 vào biểu thức trên.
=(99+1)^3
=100^3
=1000000
a ) Gọi \(A=\dfrac{3x^2-x}{9x^2-6x+1}\)
Ta có : \(A=\dfrac{x\left(3x-1\right)}{\left(3x\right)^2-2.3x.1+1}=\dfrac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\dfrac{x}{3x-1}\)
Thay x = - 8 và biểu thức A ta được :
\(A=\dfrac{-8}{3.\left(-8\right)-1}=\dfrac{8}{25}\)
Vậy giá trị của biểu thức A là \(\dfrac{8}{25}\) tại x = - 8
b ) Gọi \(B=\dfrac{x^2+3x+2}{x^3+2x^2-x-2}\)
Ta có \(B=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{x^2\left(x+2\right)-\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{\left(x^2-1\right)\left(x+2\right)}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x-1}\)
Thay x = 1000001 và biểu thức B ta được :
\(B=\dfrac{1}{1000001-1}=\dfrac{1}{100000}\)
Vậy giá trị của biểu thức B là \(\dfrac{1}{1000000}\) tại x = 1000001
c) ĐKXĐ : \(x\ne4\)
Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :
\(3x^3-4x^2+x-1⋮x-4\)
\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)
\(\Leftrightarrow131⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(131\right)\)
\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)
\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)
d) ĐKXĐ : \(x\ne-\frac{3}{2}\)
Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :
\(3x^2-x+1⋮3x+2\)
\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)
\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)
\(\Leftrightarrow3⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(3\right)\)
\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)
\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên
\(\Rightarrow x=-1\)
a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)
\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)
ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định
\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)
Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)
b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0
nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)
Vậy x < 2 thì P < 0
c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên
mà \(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)
hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)
Lập bảng :
x - 3 -1 -2 1 2
x 2 1 4 5
Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên
a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)
b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
a ) \(x^2+4x+4\)
\(=x^2+2.x.2+2^2\)
\(=\left(x+2\right)^2\)
Khi \(x=98\) , ta có :
\(\left(98+2\right)^2\)
\(=100^2=10000\)
\(x^3+3x^2+3x+1\)
\(=x^3+3.x^2.1+3.x.1^2+1^3\)
\(=\left(x+1\right)^3\)
Khi \(x=99\) , ta có :
\(\left(99+1\right)^2\)
\(=100^2=10000\)
phân tích ra thành 7 hằng đẳng thức đáng nhớ ý