K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

Bài 1 : 

a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)

TH1 : \(x^2-2x+3=0\)

\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm 

TH2 : \(x-4=0\Leftrightarrow x=4\)

b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)

TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)

\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)

TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)

c, đưa về hệ đc ko ? 

d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)

TH1 : \(x=0,74...\) ( bấm máy cx ra )

TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm 

KL : vô nghiệm 

Bài 2 : 

a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)

\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)

Vậy biểu thức ko phụ thuộc vào biến 

b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)

\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)

\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến 

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

5 tháng 3 2020

a) \(3x-2=2x-3\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

b) \(3-4y+24+6y=y+27+3y\)

\(\Leftrightarrow-2y=0\Leftrightarrow y=0\)

5 tháng 3 2020

c) \(7-2x=22-3x\)

\(\Leftrightarrow x-15=0\)

\(\Leftrightarrow x=15\)

d) \(8x-3=5x+12\)

\(\Leftrightarrow3x-15=0\Leftrightarrow x=5\)

13 tháng 4 2017

a) 3x-2=2x-3

3x=2x-1

Bớt mỗi vế 2x

x=-1

b)3-4y+24+6y=y+27+3y

3-4y+6y=y+3+3y

3-4y+3y=y+3

<=> y=0

c.7-2x=22-3x

2x=15-3x

15=x

d.8x-3=5x+12

3x-3=12

3x=15

x=5

câu e hình như bạn thiếu đề

f)x+2x+3x-19=3x+5

6x-19=3x+5

3x-19=5

3x=24

<=>x=8

g)11=8x-3=5x-3+x

11=8x-3

11=6x-3

<=> x không tồn tại

h)4-2x+15=9x+4x-2x

4-2x+15=11x

<=> nghiệm trên có số thập phân vô hạn tuần hoàn nhé

T

13 tháng 4 2017

Ngập mặt ~ 

Mình làm 1;2 câu thôi. Các câu sau bạn làm tương tự nhé.

a/ 3x - 2 = 2x - 3

<=> 3x - 2 - 2x + 3 = 0

<=> x + 1               = 0

<=> x                    = -1

b/ 3 - 4y + 24 + 6y = y + 27 + 3y

<=> 3 - 4y + 24 + 6y - y - 27 - 3y = 0

<=> -2y                                        = 0

<=>   y                                         = 0