Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1+(2+5-3-4)+ (6+9-7-8)+................+(994+997-995-996)+998
=1+0+0+.........+998
=999
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
Câu 6: Giá trị của biểu thức (x2 - 8) x (x + 3) - (x - 2) x (x + 5) tại x=-3là:
A.-4 B.16 C. -10 D. 10
Câu 7:Giá trị của biểu thức 6 + (x5 - 3) x (x3 + 2) - x8 - 2x5 tại x= -1/3 là:
A. -1/9 B. 1/9 C.9 D.-9
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
với ĐKXĐ ta có
=\(\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{7\left(x-1\right)}\)
=\(\frac{4x}{\left(x+1\right)\left(x-1\right)}\times\frac{7\left(x-1\right)}{2x}\)
=\(\frac{14}{x+1}\)
b, x=6(t/m)
khi x=6 thì A=\(\frac{14}{6+1}=2\)
c,A=7<=>\(\frac{14}{x+1}=7\)
\(\Leftrightarrow7x+7=14\)
\(\Leftrightarrow7x=7\Leftrightarrow x=1\left(loại\right)\)
Vậy ko có giá trị x để A=7
cho biết x+y+z=10 và (x+6)3+(y-7)3+(z-9)3 = 0
Tính giá trị biểu thức M= (x+6)2019+(y-7)2019+(z-9)2019
Đặt \(x+6=a;y-7=b;z-9=c\)
\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=0\end{cases}}\)
Bạn hiểu chưa :))
Đặt x+6=a, y-7=b, z-9=c
Vì x+y+z=10 nên a+b+c=0
Xét \(a^3+b^3+c^3=0\Leftrightarrow a^3+b^3+c^3-3abc=-3abc\)(1)
Ta có đẳng thức (bạn nên học đẳng thức này nhé vì nó cực kì thông dụng trong toán nâng cao):
\(a^3+b^3+c^3-3abc=\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)(2)
Vì a+b+c=0 nên từ (1), (2) suy ra \(\hept{\begin{cases}-3abc=0\\a+b+c=0\end{cases}\Rightarrow a=b=c=0}\)
Vậy M = a2019+b2019+c2019=0
C = (x + y - 7)² - 2(x + y - 7)(y - 6) + (y - 6)²
= (x + y - 7 - y + 6)²
= (x - 1)²
= x² - 2x + 1
Vì \(x=99\Rightarrow98=x-1\)
Thay \(98=x+1\)vào biểu thức A , ta có :
\(A=x^7-\left(x-1\right)x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(\Rightarrow A=x^7-x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(\Rightarrow A=x+1=99+1=100\)
Thay x+1=80 ta đc:
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5+...+x^2+x+15\)
\(79+15=94\)
\(Ta \) \(có \) \(:\)
\(x = 79 \)\(\Rightarrow\)\(x + 1 = 80\)
\(Thay \) \(x + 1 = 80 \) \(vào \) \(P(x)\) \(ta\) \(được :\)
\(P ( x ) = x ^7 - ( x + 1 )x ^6 + ( x + 1 )x^5\)\(- ( x + 1 )x ^4\)\(+ ...+ ( x + 1 )x + 15\)
\(P ( x ) = x ^7 - x ^7- x^6 + x^6 + x^5 - x^ 5\)\(- x ^4 + x ^4 + ... - x^ 2 + x ^2 + x + 15\)
\(P ( x ) = x + 15\)
\(Thay x = 79 vào P ( x ) ta được :\)
\(P ( x ) = 79 + 15 = 94\)
\(=\dfrac{\left(3\cdot\dfrac{5}{6}+\dfrac{12}{7}:\dfrac{5}{6}:\dfrac{25}{36}\right)}{\dfrac{5}{6}:\dfrac{12}{7}}=\dfrac{9559}{1750}:\dfrac{35}{72}=\dfrac{688248}{61250}\)