K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2023

A       = 2\(x^2\)y + \(xy\) - 3\(xy\)

Thay \(x\) = -2; y = 4 vào biểu thức A ta có: 

A      =  2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4

A     = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4

A     = 8 \(\times\) 4 - 8 + 24

A     =  32 - 8 + 24

A    =  24 + 24

A    =    48

14 tháng 4 2023

B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )

Thay \(x\) = - 2 vào biểu thức B ta có:

B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}

B = { 2 \(\times\) 4  - 3} - { 4 - 10 - 1}

B = { 8 - 3} - { 4 - 11}

B = 5 - (-7)

B = 5 + 7

B = 12

a: A=x^5-32

Khi x=3 thì A=3^5-32=243-32=211

b: B=x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+x^7-x^6+x^5-x^4+x^3-x^2+x-1

=x^8-1

=2^8-1=255

2 tháng 3 2022

\(6x^2y^2+x^2y^2-4x^2y^2=\left(6+1-4\right)x^2y^2=3x^2y^2\)

Thay x=3, y=-1 vào biểu thức ta có:
\(3x^2y^2=3.3^2.\left(-1\right)^2=3.9.1=27\)

6 tháng 4 2017

\(C=\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(=\left[\left(x+1\right)\left(x^2-x+1\right)\right]\left[\left(x-1\right)\left(x^2+x+1\right)\right]\)

\(=\left(x^3+1\right)\left(x^3-1\right)\)

\(=\left(-3^3+1\right)\left(-3^3+1\right)\)

\(=728\)

6 tháng 4 2017

Thay x = -3 vào rồi tính thôi!?

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8