Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Lời giải:
$x+y-2=0\Rightarrow x+y=2$
a)
$B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3$
$=x^3(x+y)+x^3y-2x^3+x^2y^2-2x^2y-2x+2x+3$
$=2x^3+x^3y-2x^3+x^2y^2-2x^2y+3$
$=x^3y+x^2y^2-2x^2y+3$
$=xy(x^2+xy-2x)+3=xy[x(x+y)-2x]+3=xy(2x-2x)+3=3$
b)
$C=x^3+x^2y-2x^2-xy+y^2-3y-x+5$
$=x^2(x+y)-2x^2-xy+y^2-3(y+x)+2x+5$
$=2x^2-2x^2-xy+y^2-6+2x+5$
$=-xy+y^2+2x-1$
$=y(x+y)+2x-1-2xy=2y+2x-1-2x=2(x+y)-1-2x=3-2x$ (không tính cụ thể được giá trị- bạn xem lại đề)
c)
$D=2x^4+3x^2y^2+y^4+y^2$
$=(x^4+2x^2y^2+y^4)+x^4+x^2y^2+y^2
$=(x^2+y^2)^2+x^4+x^2y^2+y^2$
$=1+x^2(x^2+y^2)+y^2=1+x^2+y^2=1+1=2$
a) \(\dfrac{x}{y}=\dfrac{1}{3}\Rightarrow y=3x\). Thay vào biểu thức N, ta có: \(N=\dfrac{x-3x}{x+9x}=\dfrac{-2x}{10x}=-\dfrac{1}{5}\)
b) \(x+y+1=0\Leftrightarrow x+y=-1\). Thay vào biểu thức M, ta có: \(M=\left(-1\right)^2-y^3\left(-1\right)+x^2-y^3+3\) \(=1+y^3+x^2-y^3+3\) \(=x^2+4\)
P = x3 - y2 + x + x2y - 2x2 + 3y - xy + 2021
= x3 - y2 + x + x2y - (x + y)x2 + 3y - xy + 2021 (do x + y = 2)
= x3 - y2 + x + x2y - x3 - x2y + 3y - xy + 2021
= -y2 + x + 3y - xy + 2021
= -y2 + 2y - xy + (x + y) + 2021
= -y2 + (x + y).y - xy + 2 + 2021 (Do x + y = 2)
= -y2 + xy + y2 - xy + 2023
= 2023
Vậy P = 2023
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0
Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4
= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)
= (x + y + 1)(x2 - y2) + 2(0 + 1)
= 0(x2 - y2) + 2.1
= 2
Vậy H = 2
Chúc bn học tốt!