Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nhân cả tử và mẫu phân thức thứ nhất với a
- Nhân cả tử và mẫu phân thức thứ 2 với ac
- Thay abc =2016 ta có mẫu số chung là :
3ac - 4032 +2016a
- Rút gọn => đáp án : -1
\(P=\frac{2bc-2016}{3c-2bc+2016}-\frac{2b}{3-2b+ab}-\frac{4032-3ac}{3ac-4032+2016a}\)
Ta rút gọn từng biểu thức
\(+)\frac{2bc-2016}{3c-2bc+2016}=-1+\frac{3c}{3c-2bc+2016}\)
\(+)\frac{-2b}{3-2b+ab}=\frac{-2bc}{3c-2bc+abc}=\frac{-2bc}{3c-2bc+2016}\)
\(+)\frac{4032-3ac}{3ac-4032+2016a}=-1+\frac{2016a}{3ac-2abc+2016a}\)
\(=-1+\frac{2016}{3c-2bc+2016}\)
\(\Rightarrow P=-1\)
Ta có:
\(+)\frac{2bc-2016}{3c-2bc+2016}=-1+\frac{3c}{3c-2bc+2016}\left(1\right)\)
\(+)\frac{-2b}{3-2b+ab}=\frac{-2bc}{3c-2bc+abc}=\frac{-2bc}{3c-2bc+2016}\left(2\right)\)
\(+)\frac{4032-3ac}{3ac-4032+2016a}=-1+\frac{2016a}{3ac-2abc+2016a}=-1+\frac{2016}{3c-2bc+2016}\left(3\right)\)
\(P=\left(1\right)+\left(2\right)+\left(3\right)=-1\)
Vậy .........
`(2bc-2016)/(3c-2bc+2016)`
`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`
`=-1+(3c)/(3c-2bc+2016)`
`(2b)/(3-2b+ab)
`=(2bc)/(3c-2bc+abc)`
`=(2bc)/(3c-2bc+2016)`
`(4032-3ac)/(3ac-4032+2016a)`
`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`
`=-1+(2016a)/(3ac-2abc+2016a)`
`=-1+(2016)/(3c-2bc+2016)`
`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)
`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`
`=>M=-2+1`
`=>M=-1`
`(2bc-2016)/(3c-2bc+2016)`
`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`
`=-1+(3c)/(3c-2bc+2016)`
`(2b)/(3-2b+ab)`
`=(2bc)/(3c-2bc+abc)`
`=(2bc)/(3c-2bc+2016)`
`(4032-3ac)/(3ac-4032+2016a)`
`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`
`=-1+(2016a)/(3ac-2abc+2016a)`
`=-1+(2016)/(3c-2bc+2016)`
`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)`
`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`
`=>M=-2+1`
`=>M=-1`
Nãy thiếu latex ạ sorry~~
Ta có : \(P=\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
\(\Rightarrow P+3=\frac{2a+3b+3c+1}{2015+a}+1+\frac{3a+2b+3c}{2016+b}+1+\frac{3a+3b+2c-1}{2017+c}+1\)
\(=\frac{3a+3b+3c+2016}{2015+a}+\frac{3a+3b+3c+2016}{2016+b}+\frac{3a+3b+3c+2016}{2017+c}\)
\(=\left(3a+3b+3c+2016\right)\left(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\right)\)
\(=4.2016\left(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\right)\) \(\left(a+b+c=2016\right)\)
\(=8064.\left(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\right)\)
Vì a ; b ; c dương , áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\), ta có :
\(\frac{1}{2015+a}+\frac{1}{2016+b}+\frac{1}{2017+c}\ge\frac{9}{2015+2016+2017+a+b+c}=\frac{9}{8064}\)
\(\Rightarrow P+3\ge8064.\frac{9}{8064}=9\) \(\Rightarrow P\ge6\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2015+a=2016+b=2017+c\\a+b+c=2016\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1=c+2\\a+b+c=2016\end{matrix}\right.\)
\(\Leftrightarrow a=673;b=672;c=671\)
Vậy ...
Ta có:
f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)
tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)
từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )
Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì
=> A=-1.1007-1-0,5=-1008,5
Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??
a/ Điều kiện xác định \(\hept{\begin{cases}a^2+a\ne0\\a^2-a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}}\)
b/ \(M=\frac{a^2-1}{2016+2015a^2}\left(\frac{2015a-2016}{a+a^2}+\frac{2016+2015a}{a^2-a}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}.\frac{2\left(2015a^2+2016\right)}{a\left(a+1\right)\left(a-1\right)}\)
\(=\frac{2}{a}=\frac{2}{2016}=\frac{1}{1008}\)
\(P=\dfrac{2bc-2016}{3c-2bc+2016}-\dfrac{2b}{3-2b+ab}+\dfrac{4032-3ac}{3ac-4032+2016c}\)
\(=\dfrac{2bc-abc}{3c-2bc+abc}-\dfrac{2b}{3-2b+ab}+\dfrac{2abc-3ac}{3ac-2abc+a^2bc}\)
\(=\dfrac{2b-ab}{3-2b+ab}-\dfrac{2b}{3-2b+ab}+\dfrac{2b-3}{3-2b+ab}\)
\(=\dfrac{2b-ab-2b+2b-3}{3-2b+ab}\)
\(=\dfrac{-3+2b-ab}{3-2b+ab}=-1\).