Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\cos225^0=\cos\left(180^0+45^0\right)=-\cos45^0=-\dfrac{\sqrt{2}}{2}\)
\(\sin240^0=\sin\left(180^0+60^0\right)=-\sin60^0=-\dfrac{\sqrt{3}}{2}\)
\(\cos\left(-15^0\right)=-\cot15^0=-\tan75^0=-\tan\left(30^0+45^0\right)\)
\(=\dfrac{-\tan30^0-\tan45^0}{1-\tan30^0\tan45^0}=\dfrac{-\dfrac{1}{\sqrt{3}}-1}{1-\dfrac{1}{\sqrt{3}}}=-\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=-\dfrac{\left(\sqrt{3}+1\right)^2}{2}=-2-\sqrt{3}\)
\(\tan75^0=\cot15^0=2+\sqrt{3}\)
b)
\(\sin\dfrac{7\pi}{12}=\sin\left(\dfrac{\pi}{3}+\dfrac{\pi}{4}\right)=\sin\dfrac{\pi}{3}\cos\dfrac{\pi}{4}+\cos\dfrac{\pi}{3}\sin\dfrac{\pi}{4}\)
\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)
\(\cos\left(-\dfrac{\pi}{12}\right)=\cos\left(\dfrac{\pi}{4}-\dfrac{\pi}{3}\right)=\cos\dfrac{\pi}{4}\cos\dfrac{\pi}{3}+\sin\dfrac{\pi}{3}\sin\dfrac{\pi}{4}\)
\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=0,9659\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=0,9659\)
\(\tan\dfrac{13\pi}{12}=\tan\left(\pi+\dfrac{\pi}{12}\right)=\tan\dfrac{\pi}{12}=\tan\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)\)
\(=\dfrac{\tan\dfrac{\pi}{3}-\tan\dfrac{\pi}{4}}{1+\tan\dfrac{\pi}{3}\tan\dfrac{\pi}{4}}=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}=2-\sqrt{3}\)
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).
b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).
- Xét \(sin\frac{x}{5}=0\Rightarrow C=...\)
- Với \(sin\frac{x}{5}\ne0\)
\(C.sin\frac{x}{5}=sin\frac{x}{5}.cos\frac{x}{5}.cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{2}sin\frac{2x}{5}cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{4}sin\frac{4x}{5}cos\frac{4x}{5}cos\frac{8x}{5}=\frac{1}{8}sin\frac{8x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{16}sin\frac{16x}{5}\Rightarrow C=\frac{sin\frac{16x}{5}}{16.sin\frac{x}{5}}\)
\(D=sin\frac{x}{7}+sin\frac{5x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}cos\frac{2x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}\left(cos\frac{2x}{7}+1\right)=4cos^2\frac{x}{7}.sin\frac{3x}{7}\)
\(A=cos\frac{\pi}{7}cos\frac{3\pi}{7}cos\frac{5\pi}{7}=cos\frac{\pi}{7}cos\frac{4\pi}{7}cos\frac{2\pi}{7}\)
\(\Rightarrow A.sin\frac{\pi}{7}=sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{2}sin\frac{2\pi}{7}cos\frac{2\pi}{7}cos\frac{4\pi}{7}=\frac{1}{4}sin\frac{4\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{8}sin\frac{8\pi}{7}=\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=-\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=-\frac{1}{8}\)
\(B=sin6.cos48.cos24.cos12\)
\(B.cos6=sin6.cos6.cos12.cos24.cos48\)
\(=\frac{1}{2}sin12.cos12.cos24.cos48=\frac{1}{4}sin24.cos24.cos48\)
\(=\frac{1}{8}sin48.cos48=\frac{1}{16}sin96\)
\(=\frac{1}{16}sin\left(90+6\right)=\frac{1}{16}cos6\Rightarrow B=\frac{1}{16}\)
\(A=cos3a+2cos\left(\pi-3a\right)sin^2\left(\dfrac{\pi}{4}-1,5a\right)\)
\(=cos3a-2cos3a\dfrac{1-cos\left(\dfrac{\pi}{2}-3a\right)}{2}\)
\(=cos3a-cos3a\left(1-sin3a\right)\)
\(=cos3a-cos3a+cos3asin3a=\dfrac{1}{2}sin6a\)
\(=\dfrac{1}{2}sin\left(6\dfrac{5\pi}{6}\right)=\dfrac{1}{2}sin\left(4\pi+\pi\right)=\dfrac{1}{2}sin\pi=0\)
Vì a=\(\dfrac{5\pi}{6}\) nên: \(3a=\dfrac{5\pi}{2}\) => \(\cos3a=0\)
\(\pi-3a=\pi-\dfrac{5\pi}{2}=\dfrac{-3\pi}{2}\)
=> \(\cos\left(\pi-3a\right)=0\)
a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0
sinα =
cotα = ; tanα =
b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0
cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141
tanα ≈ 0,9802; cotα ≈ 1,0202.
c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0
cosα = ≈ -0,4229.
sinα =
cotα = -
d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0
Ta có: tanα =
cosα =
\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)
\(\Rightarrow A=\dfrac{1}{8}\)
\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)
\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)
\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)
\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)
\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)
Biểu thức này ko thể rút gọn tiếp được