Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\left(x-1\right)\left(x+1\right)=x^2-1\)
\(\Leftrightarrow x^2-1\le0\)
\(\Leftrightarrow x^2\le1\)
Mà x^2 lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left[\begin{array}{nghiempt}x^2=0\\x^2=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\end{array}\right.\)
Vậy x=0 ; x=1 ; x= - 1
Để : \(\left(x+1\right).\left(x-1\right)\le0\)
Thì một trong hai số phải < 0
Từ đây , sẽ xảy ra 2 trường hợp :
\(\left(1\right)\begin{cases}x+1< 0\\x-1>0\end{cases}\Rightarrow\begin{cases}x< -1\\x>1\end{cases}\Rightarrow-1< x< 1\)
\(\left(2\right)\begin{cases}x+1>0\\x-1< 0\end{cases}\Rightarrow\begin{cases}x>-1\\x< 1\end{cases}\Rightarrow x\in O\)
Để : \(\left(x+1\right).\left(x-1\right)=0\) thì :
\(\begin{cases}x+1=0\\x-1=0\end{cases}\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Bài này mình đã làm tại linh : Câu hỏi của Nguyễn Ngọc Phượng - Toán lớp 6 | Học trực tuyến
Để đây là số tự nhiên thì \(\left\{{}\begin{matrix}x+3-5⋮x+3\\\dfrac{x-2}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;5;-5\right\}\\\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{-4;-8\right\}\)
Ta có : \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
\(\Rightarrow\)Để D đạt giá trị nhỏ nhất thì \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất
Ta có : \(3>0\) và \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất \(\Rightarrow n-2\)nhỏ nhất
\(\Rightarrow n-2\)là số nguyên dương nhỏ nhất
\(\Rightarrow n-2=1\Rightarrow n=3\in Z\)
Vậy \(n=3\) thì D có giá trị nhỏ nhất
\(D=\frac{n+1}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
D lớn nhất <=> \(\frac{3}{n-2}\) lớn nhất
<=> n - 2 là số nguyên dương nhỏ nhất (vì nếu là 0 thì phân số k có nghĩa, còn nếu là số âm thì \(\frac{3}{n-2}\) cũng âm nên k thể lớn nhất được)
<=> n - 2 = 1 <=> n = 3
D đạt GTLN là \(\frac{3+1}{3-2}=\frac{4}{2}=2\) tại n = 3