K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

Bài 1.

x = 14

=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1

Thế vào N(x) ta được :

x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x

= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x

= -x = -14

Bài 2.

a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )

= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]

= ( 1 - x )2 - ( 2x3 - 3x2 )2

= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]

= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )

= x2 - 2x + 1 - 4x6 + 12x5 - 9x4

= -4x6 + 12x5 - 9x4 + x2 - 2x + 1

b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )

= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )

= [ ( x - y + z ) - ( z - y ) ]2

= ( x - y + z - z + y )2

= x2

22 tháng 2 2017

a) M = ( x   –   1 ) 3  với x = 1001 thì M = 109.

b) N = ( x   +   y   –   3 ) 3  với x = 2; y = 6 thì N = 125.

c) P = ( 3 xz 2   –   2 y ) 3  với x = 25; y = 150; z = 2 thì P = 0.

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

26 tháng 6 2021

Bài 1 : 

a, \(\left(2x^2-3x-1\right)\left(5x+2\right)=10x^3+4x^2-15x^2-6x-5x-2\)

\(=10x^3-11x^2-11x-2\)

b, sửa đề :  \(\left(-x^2+2x-3\right)\left(4x^2-2x+3\right)\)

\(=-4x^4+2x^3-3x^2+8x^3-4x^2+6x-12x^2+6x-9\)

\(=-4x^4+10x^3-19x^2+12x-9\)

Bài 2 : 

\(B=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)

Thay x = 1 ; y = 1 ; z = -1 vào biểu thức trên ta được 

\(B=\left(1+1\right)\left(-2+1\right)+\left(1-1\right)\left(y-z\right)=2.\left(-1\right)=-2\)

26 tháng 6 2021

Trả lời:

Bài 1: 

a, ( 2x2 - 3x - 1 ) ( 5x + 2 ) 

= 10x3 + 4x2 - 15x2 - 6x - 5x - 2

= 10x3 - 11x2 - 11x - 2

b, ( - x2 + 2x - 3 ) ( 4x2 - 2 + 3 )

= - 4x4 - 2x2 + 3x2 + 8x3 - 4x + 6x - 12x2 + 6 - 9

= - 4x4 + 8x3 - 11x2 + 2x - 3

Bài 2:

B = ( 2x + y ) ( 2z + y ) + ( x - y ) ( y - z ) 

Thay x = 1, y = 1, z = - 1 vào B, ta được:

B = ( 2.1 + 1 ) [ 2.( - 1 ) + 1 ] + ( 1 - 1 ) [ 1 -  ( - 1 )

= ( 2 + 1 ) ( - 2 + 1 ) + 0 . ( 1 + 1 )

= 3 . ( - 1 ) + 0

= - 3

8 tháng 4 2016

\(a.\)

Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được  \(a,b\)

Thật vậy, ta có:

\(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow\)  \(a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\)  \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\)  \(\left(a-1\right)^2+\left(b+3\right)^2=0\)   \(\left(1\right)\)

Vì  \(\left(a-1\right)^2\ge0;\)  \(\left(b+3\right)^2\ge0\)  với mọi  \(a,b\)

nên để thỏa mãn đẳng thức \(\left(1\right)\)  thì phải xảy ra đồng thời  \(\left(a-1\right)^2=0\)  và  \(\left(b+3\right)^2=0\)

\(\Leftrightarrow\)  \(a-1=0\)  và  \(b+3=0\)  \(\Leftrightarrow\)  \(a=1\)  và  \(b=-3\)

\(b.\)  Cộng  \(1\) vào mỗi phân thức của biểu thức  \(A\), khi đó, ta có:

\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\)  (do  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

Vậy,  \(A=-3\)

9 tháng 4 2016

Viết rõ hơn được không bạn

10 tháng 7 2021

undefined

b) Ta có: \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2\)

\(=5\cdot\left(-\dfrac{1}{5}\right)^2-4\cdot\left(-\dfrac{1}{2}\right)^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

\(=\dfrac{1}{5}-1=\dfrac{-4}{5}\)