\(\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\) biết 6a=4b=3c
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Ta có:

6a = 4b = 3c

=> \(\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\)

=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

=> \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)

Đặt \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)= k

=>\(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)

Thay \(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)vào biểu thức N ta được:

N = \(\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\)

N = \(\dfrac{3.4k+6.9k-5.16k}{2.4k-4.9k+3.16k}\)

N = \(\dfrac{12k+54k-80k}{8k-36k+48k}\)

N = \(\dfrac{-14k}{20k}\)

N = \(\dfrac{-7}{10}\)

29 tháng 5 2017

\(N=\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\) (1)

Ta có:

\(6a=4b=3c\Rightarrow\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\) (2)

Thay (2) vào (1) ta có:

\(\dfrac{3.\left(2k\right)^2+6.\left(3k\right)^2-5.\left(4k\right)^2}{2.\left(2k\right)^2-4.\left(3k\right)^2+3.\left(4k\right)^2}=\dfrac{3.4.k^2+6.9.k^2-5.16.k^2}{2.4.k^2-4.9.k^2+3.16.k^2}\)

\(=\dfrac{12k^2+54k^2-80k^2}{8k^2-36k^2+48k^2}=\dfrac{k^2.\left(12+54-80\right)}{k^2.\left(8-36+48\right)}=\dfrac{-14}{20}=\dfrac{-7}{10}\)

Vậy giá trị của biểu thức N là \(\dfrac{-7}{10}\)

Chúc bạn học tốt!!!

29 tháng 5 2017

thanks bạn

29 tháng 5 2017

\(6a=4b=3c\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=4k\end{cases}}\)

xong bạn thay vô biểu thức N rút gọn là ra

18 tháng 6 2015

6a = 4b  = 3c => \(\frac{6a}{12}=\frac{4b}{12}=\frac{3c}{12}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=t\)

=> a = 2t ; b = 3t ; c = 4t thay vào N ta có \(\frac{3.\left(2t\right)^2+6.\left(3t\right)^2-5\left(4t\right)^2}{2.\left(2t\right)^2-4.\left(3t\right)^2+3\left(4t\right)^2}=\frac{3.4.t^2+6.9.t^2-5.16.t^2}{2.4.t^2-4.9.t^2+3.16.t^2}=\frac{-14t^2}{20t^2}=-\frac{7}{10}\)

31 tháng 3 2018

\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)

=> \(\dfrac{3a+4b}{3c+4d}=\dfrac{5a-6b}{5c-6d}\)

ta có

\(\dfrac{3a+4b}{3c+4d}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)

31 tháng 3 2018

Ta có:

\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)

\(\Leftrightarrow\left(3a+4b\right)\left(5c-6d\right)=\left(3c+4d\right)\left(5a-6b\right)\)

\(\Rightarrow15ac-18ad+20bc-24bd=15ac-18bc+20ad-24bd\)

\(\Rightarrow15ac-15ac-18ad-20ad=-24bd+24bd-18bc-20bc\)

\(\Rightarrow-38ad=-38bc\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)

10 tháng 10 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(\dfrac{2a+7b}{3a-4b}=\dfrac{2bk+7b}{3bk-4b}=\dfrac{b\left(2k+7\right)}{b\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\left(1\right)\)

\(\dfrac{2c+7d}{3c-4d}=\dfrac{2dk+7d}{3dk-4d}=\dfrac{d\left(2k+7\right)}{d\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\)\(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ tương tự

11 tháng 12 2017

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

27 tháng 8 2020

a) Ta có: \(3a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\) (1)

Và \(4b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\) (2)

Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

27 tháng 8 2020

a) \(\hept{\begin{cases}3a=2b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\Rightarrow}\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

-a - b + c = -52 => -( a + b - c ) = -52

                         => a + b - c = 52

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{52}{13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

b) \(C=\frac{2x^2-5x+3}{2x-1}\)( ĐKXĐ : \(x\ne\frac{1}{2}\))

\(\left|x\right|=\frac{3}{2}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)

Với x = 3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(\frac{3}{2}\right)^2-5\cdot\frac{3}{2}+3}{2\cdot\frac{3}{2}-1}=\frac{0}{2}=0\)

Với x = -3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(-\frac{3}{2}\right)^2-5\cdot\left(-\frac{3}{2}\right)+3}{2\cdot\left(-\frac{3}{2}\right)-1}=\frac{15}{-4}=-\frac{15}{4}\)