\(M=\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Lại có \(\frac{30}{26}+\frac{31}{27}+...+\frac{54}{50}-25\)

\(=\left(\frac{30}{26}-1\right)+\left(\frac{31}{27}-1\right)+...+\left(\frac{54}{50}-1\right)\)

\(=\frac{4}{26}+\frac{4}{27}+...+\frac{4}{50}=4\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)\)

Khi đó M = \(\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\right):\left[4\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)\right]=\frac{1}{4}\)

23 tháng 8 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

23 tháng 8 2019

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

2 tháng 8 2017

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

25 tháng 12 2016

Hỏi thật không

21 tháng 10 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

=\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

3 tháng 6 2015

\(\frac{\left(\frac{53}{4}-\frac{59}{27}-\frac{65}{6}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{10}{7}+\frac{10}{3}\right):\left(\frac{37}{3}-\frac{100}{7}\right)}=\frac{\left(\frac{4293}{324}-\frac{708}{324}-\frac{3510}{324}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{30}{21}+\frac{70}{21}\right):\left(\frac{259}{21}-\frac{300}{21}\right)}=\frac{\frac{25}{108}.\frac{5751}{25}+\frac{187}{4}}{\frac{100}{21}:\left(-\frac{41}{21}\right)}\)=\(\frac{\frac{213}{4}+\frac{187}{4}}{-\frac{100}{41}}=100:\left(-\frac{100}{4}\right)=-4\)

3 tháng 6 2015

\(30+\frac{14}{5}:\left(\frac{24}{150}-\frac{270}{150}-\frac{25}{150}\right)=30+\frac{14}{5}:\left(-\frac{271}{150}\right)=30+\left(-\frac{420}{271}\right)=\frac{7710}{271}\)

23 tháng 7 2016

c=39/64

d=913/105

23 tháng 7 2016

3) C thiếu đề

4) \(D=\frac{1}{9}-\left|\frac{-5}{23}\right|-\left(\frac{-5}{23}+\frac{1}{9}+\frac{25}{7}\right)+\frac{50}{4}-\frac{7}{30}\)

\(D=\frac{1}{9}-\frac{5}{23}+\frac{5}{23}-\frac{1}{9}-\frac{25}{7}+\frac{50}{4}-\frac{7}{30}\)

\(D=\frac{1}{9}-\frac{1}{9}-\frac{5}{23}+\frac{5}{23}+\frac{-25}{7}+\frac{50}{4}-\frac{7}{30}\)

\(D=0+0+\frac{125}{14}-\frac{7}{30}\)

\(D=\frac{913}{105}\)

22 tháng 3 2020

\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)

\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)

17 tháng 6 2015

Ta có:  \(1-\frac{2}{n.\left(n+1\right)}\)

          =\(\frac{n.\left(n+1\right)-2}{n\left(n+1\right)}\)

          =\(\frac{n^2+n-2}{n.\left(n+1\right)}\) 

          =\(\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)

          =\(\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}\) 

          =\(\frac{\left(n-1\right).\left(n+1+1\right)}{n.\left(n+1\right)}\)

          =\(\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)

=>\(1-\frac{2}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\left(1\right)\)

Lại có: \(M=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{99.100}\right)\)

=>      \(M=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right)....\left(1-\frac{2}{99.\left(99+1\right)}\right)\left(2\right)\)

Thay (1) vào (2) ta được:

         \(M=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}...\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)

=>     \(M=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)

=>     \(M=\frac{1.4.2.5.3.6....98.101}{2.3.3.4.4.5....99.100}\)

=>     \(M=\frac{\left(1.2.3....98\right).\left(4.5.6....101\right)}{\left(2.3.4....99\right).\left(3.4.5....100\right)}\)

=>     \(M=\frac{1.101}{99.3}\)

=> \(M=\frac{101}{297}\)

Vậy \(M=\frac{101}{297}\)

4 tháng 10 2021

yutyugubhujyikiu