\(\frac{a^{2012^{ }}b^{3^{ }}c}{b^{2016}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

24 tháng 11 2016

thật là logic

27 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có 

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b-c+c=c+c\\a-b+b+c=b+b\\-a+a+b+c=a+a\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}}}\)

Thay các tổng a + b ; a + c ; b + c vào biểu thức M , ta có :

\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)

21 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

=> \(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\) 

\(\frac{a-b+c}{b}=1\Rightarrow a+c=2b\)

\(\frac{-a+b+c}{a}=1\Rightarrow b+c=2a\)

Vậy \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

19 tháng 6 2019

8 nha !

14 tháng 8 2016

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)                                                                                                                  (Tính chất dãy các tỉ số bằng nhau)                                                                  Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)

19 tháng 10 2017

\(\frac{a+b-c}{c}=\frac{a+b}{c}-1\)

\(\frac{a+c-b}{b}=\frac{a+c}{b}-1\)

\(\frac{b+c-a}{a}=\frac{b+c}{a}-1\)

\(\Rightarrow\frac{a+b}{c}=\frac{a+c}{b}=\frac{b+c}{a}\)

\(\Rightarrow\)\(M=\left(\frac{a+b}{c}\right)^3=\left(\frac{a+c}{b}\right)^3=\left(\frac{b+c}{a}\right)^3\)

9 tháng 11 2021
a, (3x-1)^6 = (3x-1)^4 => (3x-1)^4.(3x-1)^2-(3x-1)^4.1=0 => (3x-1)^4.[(3x-1)^2-1]=0 => (3x-1)^4=0 hoặc (3x-1)^2-1=0 + Nếu (3x-1)^4=0 => 3x-1=0 => 3x=1 => x=1/3 + Nếu (3x-1)^2-1=0 => (3x-1)^2=1 => 3x-1=-1 hoặc 3x-1=1 => 3x=0 hoặc 3x=2 => x=0 hoặc x=2/3 Vậy x€{1/3;0;2/3}
9 tháng 11 2021

a/ \(\left(3x-1\right)^6=\left(3x-1\right)^4\Rightarrow\left(3x-1\right)=\left\{-1;0;1\right\}\)

\(\Rightarrow x=\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)

b/

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)

Tương tự

\(b+c=2a;a+c=2b\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=8\)

19 tháng 10 2020

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}\)(1)

+) Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Thay vào biểu thức M ta được: \(M=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

+) Nếu \(a+b+c\ne0\)

\(\Rightarrow\)Giá trị của (1) \(=1\)\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\c+a=2b\\b+c=2a\end{cases}}\)

Thay vào biểu thức M ta được: \(M=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

Vậy \(M=-1\)hoặc \(M=8\)

2 tháng 11 2018

DÙng tính chất dãy tỉ số bằng nhau là ra nhé 

3 tháng 11 2018

\(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\)