Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\dfrac{5-4}{\sqrt{5}+3-\sqrt{5}}=\dfrac{1}{3}\)A=\(\left(3\left(\dfrac{1}{3}\right)^3+8\left(\dfrac{1}{3}\right)^2+2\right)^{2009}-3^{2009}=3^{2009}-3^{2009}=0\)
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
\(x^3=3+\sqrt{17}+3-\sqrt{17}+3a.b\left(a+b\right)\) dài quá đặt a,b
a.b=-2
x^3=6-6(a+b)=6-6x
=>x^3+6x-5=6-5=1
KL: P(x)=12016 =1
\(a^3=6+3a\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\)
\(\Rightarrow a^3=6-6a\)
\(\Rightarrow a^3+6a-5=1\)
\(\Rightarrow f\left(a\right)=1^{2020}=1\)
Lời giải:
Đặt \(\sqrt[3]{20+14\sqrt{2}}=a; \sqrt[3]{20-14\sqrt{2}}=b\)
\(\Rightarrow \left\{\begin{matrix} a^3+b^3=40\\ ab=\sqrt[3]{(20+14\sqrt{2})(20-14\sqrt{2})}=\sqrt[3]{20^2-(14\sqrt{2})^2}=2\end{matrix}\right.\)
Do đó:
\((a+b)^3=a^3+b^3+3ab(a+b)\)
\(\Leftrightarrow x^3=40+3.2.x\)
\(\Leftrightarrow x^3-6x-40=0\Leftrightarrow x^2(x-4)+4x(x-4)+10(x-4)=0\)
\(\Leftrightarrow (x^2+4x+10)(x-4)=0\)
\(\Rightarrow x-4=0\Rightarrow x=4\) (do $x^2+4x+10>0$)
Vậy \(M=x^3-6x=4^3-6.4=40\)
\(x^3\)=\(3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}.x\)
=\(6+3\sqrt[3]{-8}x=6-6x\)
\(\Rightarrow x^3+6x-6=0\)
M=\(x^3+6x-5=\left(x^3+6x-6\right)+1=0+1=1\)