K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3

D = \(\dfrac{1}{2.7}\) + \(\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\) + ... + \(\dfrac{1}{37.42}\)

D = \(\dfrac{5}{5}\).(\(\dfrac{1}{2.7}\) + \(\dfrac{1}{7.12}\)\(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{37.42}\))

D = \(\dfrac{1}{5}\).\(\left(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{37.42}\right)\)

D = \(\dfrac{1}{5}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\) + ... + \(\dfrac{1}{37}\) - \(\dfrac{1}{42}\))

D = \(\dfrac{1}{5}\).( \(\dfrac{1}{2}\) - \(\dfrac{1}{42}\))

D = \(\dfrac{1}{5}\) . \(\dfrac{10}{21}\)

D = \(\dfrac{2}{21}\)

29 tháng 3

\(D=\dfrac{1}{2.7}+\dfrac{1}{7.12}+\dfrac{1}{12.17}+...+\dfrac{1}{37.42}\)

\(=\dfrac{1}{5}.\left(\dfrac{7-2}{2.7}+\dfrac{12-7}{7.12}+\dfrac{17-12}{12.17}+...+\dfrac{42-37}{37.42}\right)\)

\(=\dfrac{1}{5}.\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+...+\dfrac{1}{37}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{5}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{5}.\dfrac{10}{21}\)

\(=\dfrac{2}{21}\)

Bài 1: 

a) Ta có: \(A=-1.7\cdot2.3+1.7\cdot\left(-3.7\right)-1.7\cdot3-0.17:0.1\)

\(=1.7\cdot\left(-2.3\right)+1.7\cdot\left(-3.7\right)+1.7\cdot\left(-3\right)+1.7\cdot\left(-1\right)\)

\(=1.7\cdot\left(-2.3-3.7-3-1\right)\)

\(=-10\cdot1.7=-17\)

b) Ta có: \(B=2\dfrac{3}{4}\cdot\left(-0.4\right)-1\dfrac{2}{3}\cdot2.75+\left(-1.2\right):\dfrac{4}{11}\)

\(=\dfrac{11}{4}\cdot\left(-0.4\right)-\dfrac{5}{3}\cdot\dfrac{11}{4}+\left(-1.2\right)\cdot\dfrac{11}{4}\)

\(=\dfrac{11}{4}\left(-0.4-\dfrac{5}{3}-1.2\right)\)

\(=-\dfrac{539}{60}\)

c) Ta có: \(C=\dfrac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)

\(=\dfrac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^4}\)

\(=10\)

23 tháng 3 2022

lần đầu tiên trong đời thấy dấu . là dấu nhân chỉ thấy dấu sao với cả x thôi

23 tháng 3 2022

B

I: Để 3n+4/n+2 là số nguyên thì \(3n+4⋮n+2\)

\(\Leftrightarrow3n+6-2⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{-1;-3;0;-4\right\}\)

II: \(D=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)\)

\(D=2\cdot\left(1-\dfrac{1}{2009}\right)=2\cdot\dfrac{2008}{2009}=\dfrac{4016}{2009}\)

2A=1-1/2+1/2^2-...+1/2^98-1/2^99

=>3A=1-1/2^100

=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)

28 tháng 4 2023

Đây nha bạn:

=7−55.7+12−77.12+19−1212.19+28−1919.28+39−2828.39+40−3939.40

=15−17+17−112+112−119+119−128+128−139+139−140

=15−140=740

10 tháng 1 2022

bằng 0 nha bạn

tick cho mình

10 tháng 1 2022

\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)

17 tháng 2 2022

undefined

17 tháng 2 2022

Em làm được r ạ, cảm ơn ạ

17 tháng 3 2017

D = \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\)

= \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)

= \(\dfrac{1}{5}-\dfrac{1}{9}=\dfrac{2004}{10045}\)

17 tháng 3 2017

C = \(\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\)

= \(\dfrac{10}{5}\left(\dfrac{5}{7.12}+\dfrac{5}{12.17}+\dfrac{5}{17.22}+...+\dfrac{5}{502.507}\right)\)

= \(\dfrac{10}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+....+\dfrac{1}{502}-\dfrac{1}{507}\right)\)

= \(\dfrac{10}{5}\left(\dfrac{1}{5}-\dfrac{1}{507}\right)\)

= \(\dfrac{10}{5}.\dfrac{502}{2535}\)

= \(\dfrac{1000}{3549}\)

23 tháng 7 2021

Q=...
có thấy đa thức Q ghi j đâu

30 tháng 8 2023

\(E=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{1}{12}\)

\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{24}\right)\)

\(E=\dfrac{2}{2}+\dfrac{3}{6}+\left(\dfrac{1}{8}+\dfrac{3}{24}\right)\)

\(E=1+\dfrac{1}{2}+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)\)

\(E=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\dfrac{2}{8}\)

\(E=\dfrac{3}{2}+\dfrac{1}{4}\)

\(E=\dfrac{6}{4}+\dfrac{1}{4}\)

\(E=\dfrac{7}{4}\)

30 tháng 8 2023

Cảm ơn bạn rất nhiều nha