\(|2x-1|=\dfrac{3}{2}\). Với giá trị nà...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

\(\left|2x-1\right|=\dfrac{3}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-1=\dfrac{3}{2}\\2x-1=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Thay \(x=\dfrac{5}{4}\) vào D ta có:

\(D=4x+3=4.\dfrac{5}{4}+3=5+3=8\)

Thay \(x=-\dfrac{1}{4}\) vào D ta có:

\(D=4.\dfrac{-1}{4}+3=-1+3=2\)

Để \(D=\dfrac{3}{2}\)

\(\Leftrightarrow4x+3=\dfrac{3}{2}\\ \Leftrightarrow4x=-\dfrac{3}{2}\\ \Leftrightarrow x=-\dfrac{3}{8}\)

11 tháng 3 2022

undefined

28 tháng 7 2017

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

=> \(7-3x=0\) hoặc \(2x+1=0\)

\(3x=7-0\) hoặc \(2x=0-1\)

\(3x=7\) hoặc \(2x=-1\)

\(x=7:3\) hoặc \(x=-1:2\)

\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)

Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)

12 tháng 3 2017

Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?

Bạn kiểm tra lại nha

12 tháng 3 2017

xin lỗi z chứ ko phải là 2

5 tháng 9 2017

Từ \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\\\dfrac{1}{c}+\dfrac{1}{a}=\dfrac{1}{a}+\dfrac{1}{b}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\\\dfrac{1}{c}=\dfrac{1}{b}\end{matrix}\right.\)\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Rightarrow a=b=c\)

Khi đó \(P=\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\dfrac{3a^3}{3a^3}=1\)

16 tháng 11 2017

x,y tỉ lệ thuận với \(\dfrac{3}{4}\)\(\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :

\(\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{x+y}{\dfrac{3}{4}+\dfrac{4}{3}}=-\dfrac{50}{\dfrac{25}{12}}=-24\)

\(\dfrac{x}{\dfrac{3}{4}}=-24\Rightarrow x=-18\)

\(\dfrac{y}{\dfrac{4}{3}}=-24\Rightarrow y=-32\)

16 tháng 11 2017

Vì x tỉ lệ thuận với \(\dfrac{3}{4}\)\(\Rightarrow x=\dfrac{3}{4}.k\)

Vì y tỉ lệ thuận với \(\dfrac{4}{3}\Rightarrow y=\dfrac{4}{3}.k\)

\(\Rightarrow x+y=\dfrac{3}{4}.k+\dfrac{4}{3}.k\)

Mà x+y=50

\(\Rightarrow\dfrac{3}{4}.k +\dfrac{4}{3}.k=-50\)

\(\Rightarrow\left(\dfrac{3}{4}+\dfrac{4}{3}\right).k=-50\)

\(\Rightarrow\dfrac{25}{12}.k=-50\)

\(\Rightarrow k=-50:\dfrac{25}{12}\)

\(\Rightarrow k=-24\)

\(\Rightarrow x=\dfrac{3}{4}.\left(-24\right)=-18\)

Tick mk nha!!!

\(y=\dfrac{4}{3}.\left(-24\right)=-32\)

Vậy \(x=-18,y=-32\)

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

12 tháng 3 2017

thiếu đề

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

hay a/b=5/6

11 tháng 2 2017

\(x+y=0\Rightarrow x=-y\)

\(M=x^3-xy^2+x^2y-y^3-1\)

\(M=\left(-y\right)^3-\left(-y\right)\cdot y^2+\left(-y\right)^2y-y^3-1\)

\(M=\left(-y\right)^3-\left(-y\right)^3+y^3-y^3-1\)

\(\Rightarrow M=-1\)

11 tháng 2 2017

Ta có:

M = x3 - xy2 + x2y - y3 - 1

M =( x3 + x2y) - ( xy2 + y3) - 1

M = x2( x + y) - y2 ( x + y) - 1

M = x2.0 - y2.0 - 1

M = 0 - 0 - 1

M = -1

Vậy M = -1

2 tháng 6 2017

a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)

Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)

30 tháng 10 2017

Từ a/b=c/d⇒a/c=b/d

Áp dụng tính chất dãy tỉ số bằng nhau

a/c=b/d=a+b/c+d

⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)

Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)

Từ (1) và (2)

⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3