Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(-y+6x)-(x+y)=-y+6x-x-y=5x-2y
ta có y=7 và y-x=12 => x=-5
thế x,y ta đó 5x-2y=-25-14=-39
b/ta có 3y2+3x2+6xy=3(x+y)2=3*1=3
M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014
M=4.0+21xy.0+7x2y2.0+2014
M=0+0+0+2014=2014
nhớ
ko cho ko đâu
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(\frac{x^2+xy+y^2}{x^2-xy}\)
x - 2y = 0 <=> x = 2y
Thế vào ta được :
\(\frac{x^2+xy+y^2}{x^2-xy}=\frac{\left(2y\right)^2+2y\cdot y+y^2}{\left(2y\right)^2-2y\cdot y}=\frac{4y^2+2y^2+y^2}{4y^2-2y^2}=\frac{7y^2}{2y^2}=\frac{7}{2}\)
Vậy giá trị của biểu thức = 7/2 khi x - 2y = 0
Ta có M = x3 + x2y - 2x2 - xy - y2 +3y + x + 2017
= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019
thay x + y - 2 = 0 vào M ta có : M = x2.0 - y.0 + 0 + 2019
= 2019
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)
Thay \(x+y-2=0\)vào đa thức ta được:
\(M=0.\left(x^2-y+1\right)+2019=2019\)
Từ x + y + 1 = 0
=> x + y = -1
B = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y) + 3
= (x2 - y2)(x + y + 1) + 2(x + y) + 3
- Thay x + y + 1 = 0 ; x + y = -1 vào B , ta có:
=> B = (x2 - y2).0 + 2.(-1) + 3
= -2 + 3 = 1
Vậy B = 1 khi x + y + 1 = 0
Ta có \(\frac{x}{y}=\frac{2}{3}\)=> x=2k,y=3k (k khác 0)
lúc đó A=\(\frac{21x-14y}{73x+79y}=\frac{21\left(-2k\right)-14.3k}{73\left(-2k\right)+79.3k}\)
=\(\frac{-42k-42k}{-146k+237k}=\frac{-84k}{91k}=\frac{-12}{13}\)
Mik nghĩ vậy
x+y-1 = 0 => x + y = 1
=> A = 2(x+y) - 2020 = 2.1 - 2020 = (-2018)