K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

đây là đề thi học sinh giỏi Bình định  năm 2014-2015 ( mình đc cô giáo cho làm r nên bạn cứ yên tâm là đúng nhá . làm tỷ đề mà zẫn nhớ )

ta có \(x^3=\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)-3\sqrt[3]{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}.x\Rightarrow x^3+3x=2\sqrt{3}\left(1\right)\)

\(y^3=\left(\sqrt{5}+2\right)-\left(\sqrt{5}-2\right)-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}.y\Rightarrow y^3+3y=4\left(2\right)\)

Trừ theo zế của (1) cho (2) ta được

\(\left(x^3-y^3\right)+3\left(x-y\right)=2\sqrt{3}-4\)

do đó 

\(A=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=x^3-y^3-3\left(x-y\right)xy+3\left(x-y\right)xy+3\left(x-y\right)\)

\(=x^3-y^3+3\left(x-y\right)=2\sqrt{3}-4\)

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

18 tháng 7 2016

Bài 32: 

a) P=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

       =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

        =  \(1+\sqrt{2}\)

b) Có:  \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=2y\end{cases}}}\)

Thay x=-y  ta có: Q=\(\frac{-y-y}{-y+y}\)=\(\frac{-2y}{0}\)(loại )

Thay x=2y ta có :   Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Lời giải:

Áp dụng HĐT $(a-b)^3=a^3-b^3-3ab(a-b)$ ta có:

\(x^3=2+\sqrt{3}-(2-\sqrt{3})-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}.x\)

\(\Leftrightarrow x^3=2\sqrt{3}-3x\)

\(y^3=\sqrt{5}+2-(\sqrt{5}-2)-3\sqrt[3]{(\sqrt{5}-2)(\sqrt{5}+2)}.y\)

\(\Leftrightarrow y^3=4-3y\)

Khi đó:

\(A=(x-y)^3+3(x-y)(xy+1)=x^3-y^3-3xy(x-y)+3(x-y)xy+3(x-y)\)

\(=x^3-y^3+3x-3y=2\sqrt{3}-3x-(4-3y)+3x-3y\)

\(=2\sqrt{3}-4\)

AH
Akai Haruma
Giáo viên
23 tháng 3 2020

Lời giải:

Áp dụng HĐT $(a-b)^3=a^3-b^3-3ab(a-b)$ ta có:

\(x^3=2+\sqrt{3}-(2-\sqrt{3})-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}.x\)

\(\Leftrightarrow x^3=2\sqrt{3}-3x\)

\(y^3=\sqrt{5}+2-(\sqrt{5}-2)-3\sqrt[3]{(\sqrt{5}-2)(\sqrt{5}+2)}.y\)

\(\Leftrightarrow y^3=4-3y\)

Khi đó:

\(A=(x-y)^3+3(x-y)(xy+1)=x^3-y^3-3xy(x-y)+3(x-y)xy+3(x-y)\)

\(=x^3-y^3+3x-3y=2\sqrt{3}-3x-(4-3y)+3x-3y\)

\(=2\sqrt{3}-4\)

20 tháng 6 2021

a) ĐKXĐ: \(x,y\ge0\)

\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)

b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)

\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)

20 tháng 6 2021

giỏi zữ z