\(A=\left(2x^2+x-1\right)-\left(x^2+5x-1\right)\)tại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) \(A=\left(2x^2+x-1\right)-\left(x^2+5x-1\right)\)

\(\Leftrightarrow A=2x^2+x-1-x^2-5x+1\)

\(\Leftrightarrow A=x^2-4x\)

Tại x=-2, ta có :

\(\Leftrightarrow A=\left(-2\right)^2-4\times\left(-2\right)\)

\(\Leftrightarrow A=12\)

b) \(B=-x^4+3x^2-x^3+3-2x-x^2+x^4+x^3-2x^2\)

\(\Leftrightarrow B=-2x+3\)

Với \(x=\dfrac{3}{2}\), ta có :

\(B=-2\times\dfrac{3}{2}+3\)

\(\Leftrightarrow B=0\)

a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)

b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)

c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

17 tháng 3 2018

a) \(2x^2-8x\)

* Tại x = 1 :

\(2.1^2-8.1=-6\)

* Tại x = \(\dfrac{1}{2}\)

\(2.\left(\dfrac{1}{2}\right)^2-8.\dfrac{1}{2}=-3,5\)

b) \(3x^2+1\)

* Tại x = \(-\dfrac{1}{3}\)

\(3\left(\dfrac{-1}{3}\right)^2+1=\dfrac{4}{3}\)

c) \(2x^2-5x+2\)

* Tại |x| = \(\dfrac{1}{2}\)

-TH1 : x = \(\dfrac{1}{2}\)

\(2.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}+2=5\)

- TH2 : x= \(\dfrac{-1}{2}\)

\(2\left(\dfrac{-1}{2}\right)^2-5\dfrac{-1}{2}+2=5\)

11 tháng 2 2018

1. \(A=2x^2-5x-5\)

* Tại \(x=-2\) giá trị của biểu thức là :

\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)

\(A=8-\left(-10\right)-5=13\)

*Tại \(x=\dfrac{1}{2}\)

\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)

\(A=-7\)

11 tháng 2 2018

Câu 3:

a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)

..........................\(\Leftrightarrow x=3\)

Vậy MIN A = 9 \(\Leftrightarrow x=3\)

P/s: câu b coi lại đề

c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)

Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy .............................

Câu 5:

Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)

Để A nguyên thì \(2⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do đó:

\(x-3=-2\Rightarrow x=1\)

\(x-3=-1\Rightarrow x=2\)

\(x-3=1\Rightarrow x=4\)

\(x-3=2\Rightarrow x=5\)

Vậy .....................

20 tháng 2 2020

a) M(x) = A(x) - 2B(x) + C(x)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))

\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)

b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:

\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)

\(M\left(x\right)=2.0,25+\frac{3}{16}\)

\(M\left(x\right)=0,5+\frac{3}{16}\)

\(M\left(x\right)=\frac{11}{16}\)

c) Ta có : \(x^2\ge0\)

\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)

Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)

3 tháng 3 2017

Ta có: \(\left|2x-1\right|-x=4\)

\(\Rightarrow\left|2x-1\right|=4+x\)

+) TH1: \(2x-1\ge0\Rightarrow2x\ge1\Rightarrow x\ge\dfrac{1}{2}\)

Ta có: \(2x-1=4+x\)

\(\Rightarrow2x-x=1+4\)

\(\Rightarrow x=5\) (t/m)

+) TH2: \(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \dfrac{1}{2}\)

Khi đó \(-2x+1=4+x\)

\(\Rightarrow-2x-x=-1+4\)

\(\Rightarrow-3x=3\)

\(\Rightarrow x=-1\) (t/m)

Vậy \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\).