\(\frac{21x-14y}{73x+79y}\) với \(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

ta có:\(\frac{x}{y}=-\frac{2}{3}\Rightarrow x=3k;y=-2k\)

ta có:\(A=\frac{21.3k-14.\left(-2k\right)}{73.3k+79.\left(-2k\right)}=\frac{63k+28k}{219k+\left(-158k\right)}=\frac{91k}{61k}=\frac{91}{61}\)

26 tháng 2 2016

dễ thấy từ x/y=-2/3,có x khác 0 và y khác 0

Chia cả tử và mẫu của A cho y,ta đc:

\(A=\frac{\left(21x-14y\right):y}{\left(73x+79y\right):y}=\frac{\left(21x-14y\right).\frac{1}{y}}{\left(73x+79y\right).\frac{1}{y}}=\frac{\frac{21x}{y}-\frac{14y}{y}}{\frac{73x}{y}+\frac{79y}{y}}=\frac{21.\frac{x}{y}-14}{73.\frac{x}{y}+79}=\frac{21.\frac{-2}{3}-14}{73.\frac{-2}{3}+79}=-\frac{12}{13}\)

Vậy A=-12/13

27 tháng 3 2016

Ta có:x/y=-2/3<=>x/-2=y/3

 Đặt x/-2=y/3=k=>x=-2k;y=3k

thay vào A rồi triệt tiêu tiếp

16 tháng 12 2017

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)

.Ta có:\(P=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)

23 tháng 6 2016

Bài 1 thay vào rồi tính bạn nhé

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

27 tháng 12 2016

Giải:
Ta có: \(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\left(x+2\right)=2\left(y+3\right)\)

\(\Rightarrow3x+6=2y+6\)

\(\Rightarrow3x=2y\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k,y=3k\)

Lại có: \(A=\frac{x^2+y^2}{xy}=\frac{\left(2k\right)^2+\left(3k\right)^2}{2k3k}=\frac{4k^2+9k^2}{6k^2}=\frac{\left(4+9\right)k^2}{6k^2}=\frac{13}{6}\)

Vậy \(A=\frac{13}{6}\)

27 tháng 12 2016

\(A=\frac{13}{6}\)

23 tháng 8 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=n\Rightarrow x=3n;y=5n\)

\(\Rightarrow A=\frac{5.3^2n^2+3.5^2n^2}{10.3^2n^2-3.5^2n^2}=\frac{n^2\left(45+75\right)}{n^2\left(90-75\right)}=\frac{n^2.120}{n^2.25}=\frac{24}{5}\)

23 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)

Thay 3y = 5x ; ta được: 

\(A=\frac{5x^2+5x^2}{10x^2-5x^2}=\frac{2\times5x^2}{2\times5x^2-5x^2}=\frac{2\times5x^2}{5x^2\times\left(2-1\right)}=\frac{2\times5x^2}{5x^2\times1}=2\)  

13 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

13 tháng 11 2021

Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Rightarrow x=2k;y=5k;z=7k\)

Theo đề ta có:

\(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)

\(A=\frac{\left(2-5+7\right)k}{2k+10k-7k}=\frac{\left(2-5+7\right)k}{\left(2+10-7\right)k}\)

\(A=\frac{4k}{5k}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)