\(a,A=x^3+12x-8\)\(\text{ }\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

a,Ta có :\(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)

\(\Rightarrow x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3\sqrt[3]{4\left(\sqrt{5}-1\right).4\left(\sqrt{5}+1\right)}.\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)\(\Rightarrow x^3=8-3\sqrt[3]{16\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}.x\)

\(\Rightarrow x^3=8-3\sqrt[3]{64}.x\Rightarrow x^3=8-12x\)\(\Rightarrow x^3-12x+8=0\)

Vậy \(x^3+12x-8=0\)

19 tháng 8 2017

b,\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)(1)

Ta có :\(3=\left(x^2+3\right)-x^2=\left(\sqrt{x^2+3}-x\right)\left(\sqrt{x^2+3}+x\right)\)(2)

\(3=\left(y^2+3\right)-y^2=\left(\sqrt{y^2+3}-y\right)\left(\sqrt{y^2+3}+y\right)\) (3)

Từ (1) và (2) ta suy ra :\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

Từ (1) và (3) ta suy ra :\(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)

Cộng 2 đẳng thức trên vế theo vế ta được :

\(x+y+\sqrt{x^2+3}+\sqrt{y^2+3}=\sqrt{x^2+3}+\sqrt{y^2+3}-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy B=0

19 tháng 10 2018

1/ Thực hiện phép tính

a) 9220+12235

 \(=\sqrt{\left(\sqrt{5}-\sqrt{4}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)

\(=\sqrt{5}-\sqrt{4}+\sqrt{7}-\sqrt{5}=\sqrt{7}-\sqrt{4}=\sqrt{7}-2\)

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien

10 tháng 9 2017

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

NV
17 tháng 5 2019

Câu 1: Đề bài sai, với điều kiện đề bài đã cho thì Q vẫn nguyên tại \(x=0\), đề bài đúng phải là \(\forall x>0\) thì Q không nguyên (ko hiểu sao lại có điều kiện \(x\ne4\) , cái này hoàn toàn ko ảnh hưởng gì tới bài toán)

\(A=Q^2=\frac{x+4\sqrt{x}+4}{x+4}\Leftrightarrow Ax+4A=x+4\sqrt{x}+4\)

\(\Leftrightarrow\left(A-1\right)x-4\sqrt{x}+4A-4=0\)

\(\Delta'=4-\left(4A-4\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow=-A^2+2A\ge0\Rightarrow0\le A\le2\Rightarrow A\le2\)

\(\Rightarrow Q\le\sqrt{2}< 2\)

Mặt khác ta có \(\sqrt{x}+2=\sqrt{x}+\sqrt{4}>\sqrt{x+4}\)

\(\Rightarrow Q=\frac{\sqrt{x}+2}{\sqrt{x+4}}>1\) \(\Rightarrow1< Q< 2\Rightarrow Q\) không thể nhận giá trị nguyên

NV
17 tháng 5 2019

Câu 2: ĐKXĐ: \(x\ge-2\)

a/ \(\Leftrightarrow4\left(x^2+2x+3\right)+3\left(x+2\right)=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\) ta được:

\(3a^2-8ab+4b^2=0\Leftrightarrow\left(a-2b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\3a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=2\sqrt{x^2+2x+3}\\3\sqrt{x+2}=2\sqrt{x^2+2x+3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2+7x+10=0\left(vn\right)\\4x^2-x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1\pm\sqrt{97}}{8}\)

b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge7\\-5\le x\le-2\end{matrix}\right.\)

\(\Leftrightarrow3x^2-11x-22=7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}\)

\(\Leftrightarrow3\left(x^2-5x-14\right)+4\left(x+5\right)-7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-5x-14}=a\ge0\\\sqrt{x+5}=b\ge0\end{matrix}\right.\) ta được:

\(3a^2-7ab+4b^2=0\Leftrightarrow\left(a-b\right)\left(3a-4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-5x-14}=\sqrt{x+5}\\3\sqrt{x^2-5x-14}=4\sqrt{x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-19=0\\9x^2-61x-206=0\end{matrix}\right.\) \(\Rightarrow x=...\)