K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow2+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+0=1\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\)

Mặt khác: 

\(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

=>\(\Rightarrow a^4+b^4+c^4+2.1=4\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)

tính tương tự câu kia

18 tháng 9 2019

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=\frac{-1}{2}\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)( 1 )

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

Mà theo ( 1 ) nên có \(a^2+b^4+c^4=\frac{1}{2}\)

P/S:Hướng lm là như vầy nhé ! 

18 tháng 9 2019

Cho a + b + c = 0 và a2 + b2 +c2= 1 Tính giá trị của biểu thức M = a4+b4+c4 Giúp mk vs nha!!

Tham khảo

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

17 tháng 10 2016

\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)

\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)

\(8x^2+10x-3=0\)

\(8x^2-2x+12x-3=0\)

\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)

\(\left(4x-1\right)\left(2x+3\right)=0\)

\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)

\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)

\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)

\(\left(3x-1\right)\left(x-9\right)=0\)

\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)

20 tháng 10 2016

còn bài cuối thì sao à pn

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)

7 tháng 7 2017

Ta có : x4 - 12x3 + 12x2 - 12x + 111 

= x3(x - 12) + 12x(x - 1) + 111

Thay x = 11 vào => 113(11 - 12) + 12.11.(11 - 1) + 111

= 113 + 120.11 + 111

= 121.11 + 120.11 + 111

= 11(121 + 120) + 111

= 11.241 + 111

= 2651 + 111

= 2762

3 tháng 7 2017

cho mk sửa lại đề chút nhoa:

b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b

3 tháng 7 2017

a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)

=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)

b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)

\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)

\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

a)

$A=B\Leftrightarrow (x-3)(x+4)-2(3x-2)=(x-4)^2$

$\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16$

$\Leftrightarrow 3x=24\Leftrightarrow x=8$

b)

$A=B\Leftrightarrow (x+2)(x-2)+3x^2=(2x+1)^2+2x$

$\Leftrightarrow x^2-4+3x=4x^2+6x+1$

$\Leftrightarrow 3x^2+3x+5=0$

$\Leftrightarrow 3(x+\frac{1}{2})^2=\frac{-17}{4}< 0$ (vô lý)

Do đó k có giá trị nào của $x$ để $A=B$

c)

$A=B\Leftrightarrow (x-1)(x^2+x+1)-2x=x(x-1)(x+1)$

$\Leftrightarrow x^3-1-2x=x(x^2-1)=x^3-x$

$\Leftrightarrow x=-1$

d)

$A=B\Leftrightarrow (x+1)^3-(x-2)^3=(3x-1)(3x+1)$

$\Leftrightarrow [(x+1)-(x-2)][(x+1)^2+(x+1)(x-2)+(x-2)^2]=9x^2-1$

$\Leftrightarrow 3(x^2+2x+1+x^2-x-2+x^2-4x+4)=9x^2-1$

$\Leftrightarrow 3(3x^2-3x+3)=9x^2-1$

$\Leftrightarrow -9x=-10\Leftrightarrow x=\frac{10}{9}$

AH
Akai Haruma
Giáo viên
23 tháng 3 2020

$(x+1)^3-(x-2)^3=(3x-1)(3x+1)$