Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
a) 2(3x - 1)(2x + 5) - 6(2x - 1)(x + 2) = -6
<=> 2(6x2 + 13x - 5) - 6(2x2 + 3x - 2) = -6
<=> 12x2 + 26x - 10 - 12x2 - 18x + 12 = -6
<=> 8x = -8
<=> x = -1
Vậy S = {-1}
b)Đk: x \(\ge\)0
\(3\left(2\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)-\left(2\sqrt{x}-3\right)\left(9\sqrt{x}-1\right)-3=-3\)
<=> \(3\left(6x-5\sqrt{x}+1\right)-18x+19\sqrt{x}-3=0\)
<=> \(18x-15\sqrt{x}+3-18x+19\sqrt{x}-3=0\)
<=> \(4\sqrt{x}=0\) <=> x = 0 (tm)
vậy S = {0)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
a) \(x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(A=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Với x=2 thì: \(A=\left(2-1\right)^3=1\)
Với x=-2 thì \(A=\left(-2-1\right)^3=-3^3=-27\)
b) \(x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
\(B=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Với x=1 thì \(A=\left(1-1\right)^3=0\)
Với x=-6 thì \(A=\left(-6-1\right)^3=-7^3=-343\)
\(\text{⇔(x−1)(x+6)=0}\)chỗ đó s ra thế bn ?? mìh chưa hiểu
\(x=1-\sqrt{2}\)
=> \(1-x=\sqrt{2}\)
<=>\(1-2x+x^2=2\)
<=> \(x^2-2x-1=0\)
Ta có \(A=2x^5+x^3-3x^2+x-1\)
=\(2x^3\left(x^2-2x-1\right)+4x^2\left(x^2-2x-1\right)+11x\left(x^2-2x-1\right)+23\left(x^2-2x-1\right)+58x+22\)
\(=58x+22\)
=\(58\left(1-\sqrt{2}\right)+22=80-58\sqrt{2}\)
Vậy \(A=80-58\sqrt{2}\)