Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
a, \(P=8x^2-7x^3+6x-5x^2+2x^3+3x^2-8x\)
\(=\left(8x^2-5x^2+3x^2\right)+\left(-7x^3+2x^3\right)+\left(6x-8x\right)\)
\(=6x^2-5x^3-2x\)
Thay x = -1 vào P ta được:
\(P=6.\left(-1\right)^2-5.\left(-1\right)^3-2.\left(-1\right)=6+5+2=13\)
b, \(Q=-2x^2y+4y+11x^2y\)
\(=\left(-2x^2y+11x^2y\right)+4y\)
\(=9x^2y+4y\)
Thay \(x=\frac{-1}{3};y=\frac{11}{4}\)vào Q ta được:
\(Q=9.\left(-\frac{1}{3}\right)^2.\frac{11}{4}-4.\frac{11}{4}=9\cdot\frac{1}{9}\cdot\frac{11}{4}-11=\frac{11}{4}-11=\frac{-33}{4}\)
P=8x^2-7x^3+6x-5x^2+2x^3-8x
Thay x=-1 vào biểu thức trên ta có:
8.-1^2-7.-1x^3+6.-1-5.-1^2+2.-1^3-8.-1=4
Vậy giá trị của biểu thức 8x^2-7x^3+6x-5x^2+2x^3-8x tại x=-1 là4
Q=-2x^2y+4y+11x^2y
thay x=-1/3 và y=11/4 vào biểu thức trên ta có:
-2.-1/3^2.11/4+4.11/4+11.-1/3^2.11/4=-11/4
Vậy giá trị của biểu thức -2x^2y+4y+11x^2y
a: \(P=-5x^3+6x^2-2x\)
\(=-5\cdot\left(-1\right)^3+6\cdot\left(-1\right)^2-2\cdot\left(-1\right)\)
\(=-5\cdot\left(-1\right)+6+2=5+6+2=13\)
b: \(Q=-2\cdot\left(-\dfrac{1}{3}\right)^2\cdot\dfrac{11}{4}+4\cdot\dfrac{11}{4}+11\cdot\dfrac{1}{9}\cdot\dfrac{11}{4}\)
\(=-\dfrac{11}{2}\cdot\dfrac{1}{9}+11+\dfrac{121}{36}=\dfrac{55}{4}\)
a: Thay x=1 và y=1/3 vào A, ta được:
\(A=2\cdot1-3\cdot\dfrac{1}{3}=2-1=1\)
b:
Sửa đề; x=1;y=-1;z=-1
Thay x=1; y=-1; z=-1 vào B, ta được:
\(B=2\cdot1^2-\left(-1\right)^2+\left(-1\right)^3=2-1-1=0\)
c:
ĐKXĐ: x<>1/2
|x|=3/4
=>\(\left[{}\begin{matrix}x=\dfrac{3}{4}\left(nhận\right)\\x=-\dfrac{3}{4}\left(nhân\right)\end{matrix}\right.\)
Thay x=3/4 vào N, ta được:
\(N=\dfrac{6\cdot\left(\dfrac{3}{4}\right)^3+\dfrac{3}{4}-3}{2\cdot\dfrac{3}{4}-1}=\dfrac{6\cdot\dfrac{27}{64}+\dfrac{3}{4}-3}{\dfrac{3}{2}-1}=\dfrac{9}{16}\)
Thay x=-3/4 vào N, ta được:
\(N=\dfrac{6\cdot\left(-\dfrac{3}{4}\right)^3+\dfrac{-3}{4}-3}{2\cdot\dfrac{-3}{4}-1}=\dfrac{201}{80}\)
d: x=2344
=>x+1=2345
\(D=x^5-2345x^4+2345x^3-2345x^2+2345x-2345\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)
=-1