Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Câu 1: a, \(\left(-2\right).4.5.38.\left(-25\right)\)
\(=\left[\left(-2\right).5\right].\left[4.\left(-25\right)\right].38\)
\(=\left(-10\right).\left(-100\right).38\)
\(=1000.38=38000\)
b,\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}\)
\(=\left(\frac{1}{3}+\frac{3}{8}\right)-\frac{7}{12}\)
\(=\frac{17}{24}-\frac{7}{12}=\frac{1}{8}\)
c, \(\frac{-5}{8}.\frac{5}{12}+\frac{-5}{8}.\frac{7}{12}+2\frac{1}{8}\)
\(=\frac{-5}{8}.\left(\frac{5}{12}+\frac{7}{12}\right)+\frac{17}{8}\)
\(=\frac{-5}{8}.1+\frac{17}{8}\)
\(=\frac{3}{2}\)
Câu 2: a, \(x-\frac{2}{5}=0,24\)
\(x-0,4=0,24\)
\(x=0,24+0,4\)
\(\Rightarrow x=0,64\left(\frac{16}{25}\right)\)
b,\(\frac{2}{3}.x+\frac{1}{12}=\frac{1}{10}\)
\(\frac{2}{3}.x=\frac{1}{10}-\frac{1}{12}\)
\(\frac{2}{3}.x=\frac{1}{60}\)
\(x=\frac{1}{60}:\frac{2}{3}\)
\(\Rightarrow x=\frac{1}{40}\)
c, \(\left(3\frac{1}{2}-2x\right).1\frac{1}{3}=7\frac{1}{3}\)
\(\frac{7}{2}-2x=\frac{22}{3}:\frac{4}{3}\)
\(\frac{7}{2}-2x=\frac{11}{2}\)
\(2x=\frac{7}{2}-\frac{11}{2}\)
\(2x=-2\)
\(\Rightarrow x=-2:2\)
\(x=-1\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)