Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\cdot\left(\dfrac{5}{9}+\dfrac{14}{99}\right):\left(\dfrac{8}{99}-\dfrac{4}{33}\right)\)
\(=3\cdot\dfrac{55+14}{99}:\dfrac{8-12}{99}\)
\(=3\cdot\dfrac{69}{-4}=\dfrac{-207}{4}\)
mk viết thiếu nha, viết lại là:
Cho a+b = 9 . Tính giá trị của biểu thức sau:
M = 0,a(b) + 0,b(a)
ta có: (a+b)/3 = (b+c)/4 =>4a+4b=3b+3c=>4a+b-3c=0 (1)
ta có : (b+c)/3=(c+a)/5=> 5b+5c=4c+4a => 4a-5b-c=0=> 4a= 5b+c (2)
ta có: (c+a)/5=(a+b)/3 => 5a+5b= 3c+3a => 2a+5b-3c=0 => 3c=2a+5b (3)
THay (2) vào (1) ta dc:c = 3b
tay (3) vao (1) ta đc: a = 2b
M= 8a-b-5c+2016=8.2b-b-5.3b+2016=2016. HẾT
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)
\(=\frac{a+b+c}{6}\)
\(\Rightarrow\) Thay M vào tính
Ta có: a - b - c = 0
=> \(\hept{\begin{cases}a-c=b\\a-b=c\\-b-c=-a\end{cases}}\Rightarrow\hept{\begin{cases}a-c=b\\-\left(a-b\right)=-c\\-\left(b+c\right)=-a\end{cases}}\Rightarrow\hept{\begin{cases}a-c=b\\-a+b=-c\\b+c=a\end{cases}}\)
Lại có: \(P=\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)
\(\Rightarrow P=\frac{a-c}{a}.\frac{b-a}{b}.\frac{c+b}{c}=\frac{b}{a}.\frac{-c}{b}.\frac{a}{c}=-1\)
Khi x >0
A=\(\frac{|x-|x||}{x}=\frac{|x-x|}{x}=\frac{0}{x}=\)0
Khi x <0
A=\(\frac{|x-|x||}{x}=\frac{|x--x|}{x}=\frac{|2x|}{x}=\frac{-2x}{x}=-2\)
Vậy A\(\in\){-2;0}