Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
Vì :
\(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=\left(-\frac{c}{b}\right).\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy A=-1
a^2+9ab-22b^2=0
=>a^2+11ab-2ab-2b^2=0
=>(a+11b)(a-2b)=0
=>a=2b hoặc a=-11b
TH1: a=2b
\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)
TH2: a=-11b
\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)
ta có :\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1
*\(\dfrac{a}{b}\)=1 =>a=b
*\(\dfrac{b}{c}\)=1 =>b=c
*\(\dfrac{c}{a}\)=1 =>c=a
=>a=b=c
=>\(a^{670}\)+\(b^{672}\)+\(c^{673}\)/\(a^{2015}\)=\(a^{2015}\)/\(a^{2015}\)=1
nhớ like nha
\(A=3\cdot\left(\dfrac{5}{9}+\dfrac{14}{99}\right):\left(\dfrac{8}{99}-\dfrac{4}{33}\right)\)
\(=3\cdot\dfrac{55+14}{99}:\dfrac{8-12}{99}\)
\(=3\cdot\dfrac{69}{-4}=\dfrac{-207}{4}\)