K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

\(A=\left\{\left[\left(\frac{-1}{2}+\frac{-1}{9}\right)-\frac{7}{18}\right]+\left(\frac{3}{5}+\frac{4}{35}+\frac{2}{7}\right)+\frac{1}{127}\right\}\)

\(\Rightarrow A=\left\{\left[\frac{-11}{18}-\frac{7}{18}\right]+1+\frac{1}{127}\right\}\)

\(A=\left(-1\right)+1+\frac{1}{127}\)

\(A=0+\frac{1}{127}\)

\(A=\frac{1}{127}\)

24 tháng 2 2021

dap an: 2000

a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)

a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)

b: \(=-xy^3\)

 

7 tháng 4 2015

\(A=\frac{1}{\sqrt{2.1}\left(\sqrt{2}+\sqrt{1}\right)}+\frac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+\frac{1}{\sqrt{3.4}\left(\sqrt{4}+\sqrt{3}\right)}+...+\frac{1}{\sqrt{999.1000}\left(\sqrt{1000}+\sqrt{999}\right)}\)

\(A=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2.1}\left(2-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2.3}\left(3-2\right)}+\frac{\sqrt{4}-\sqrt{3}}{\sqrt{3.4}\left(4-3\right)}+...+\frac{\sqrt{1000}-\sqrt{999}}{\sqrt{999.1000}\left(1000-999\right)}\)

\(A=\frac{\sqrt{2}}{\sqrt{2.1}}-\frac{\sqrt{1}}{\sqrt{2.1}}+\frac{\sqrt{3}}{\sqrt{2.3}}-\frac{\sqrt{2}}{\sqrt{2.3}}+\frac{\sqrt{4}}{\sqrt{3.4}}-\frac{\sqrt{3}}{\sqrt{3.4}}+...+\frac{\sqrt{1000}}{\sqrt{999.1000}}-\frac{\sqrt{999}}{\sqrt{1000.999}}\)

\(A=\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{999}}-\frac{1}{\sqrt{1000}}\)

\(A=\frac{1}{1}-\frac{1}{\sqrt{1000}}=\frac{\sqrt{1000}-1}{\sqrt{1000}}=\frac{10\sqrt{10}-1}{10\sqrt{10}}\)

 

 

 

16 tháng 6 2018

Bài 1:

a) \(B=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{61.63}-\frac{2}{63.65}\)

\(B=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{61.63}+\frac{2}{63.65}\right)\)

\(B=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{61}-\frac{1}{63}+\frac{1}{63}-\frac{1}{65}\right)\)

\(B=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(B=1-\frac{62}{195}\)

\(B=\frac{133}{195}\)

b) \(C=1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)

\(C=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)

\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)

\(C=1-\frac{1}{5}.\frac{19}{100}\)

\(C=1-\frac{19}{500}\)

\(C=\frac{481}{500}\)

bài 2 thì bn lm như bn Phùng Minh Quân nha!

16 tháng 6 2018

Câu 1 : mình ko hiểu đề bài cho lắm ~.~ 

Câu 2 : 

Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\)

\(\Rightarrow\)\(A=10+\left|\frac{1}{2}-x\right|\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|\frac{1}{2}-x\right|=0\)

\(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(10\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

5 tháng 10 2019

Thay x = -1 vào biểu thức, ta có:

5.(-1)2 + 3.(-1) – 1 = 5.1 – 3 – 1 = 1

Vậy giá trị của biểu thức 5x2 + 3x – 1 tại x = -1 là 1