\(3+\sqrt{12}\))(\(\sqrt{7}-2\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(B=3\sqrt{7}-6\sqrt{12}+\sqrt{84}-24\)

b: \(B=3\cdot\dfrac{\sqrt{2}-\sqrt{5}}{\left(\sqrt{2}-\sqrt{5}\right)^2}=\dfrac{3}{\sqrt{2}-\sqrt{5}}=-\sqrt{5}-\sqrt{2}\)

9 tháng 8 2018

Bài 1 bạn nhóm , trục như thường nhé :D

Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)

\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)

\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)

\(D=-\sqrt{6}\left(do:D< 0\right)\)

9 tháng 8 2018

cảm ơn bn nhé!!! yeu

12 tháng 7 2018

\(1a.2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{548}=2\sqrt{16.5\sqrt{3}}-2\sqrt{\sqrt{75}}-6\sqrt{137}=8\sqrt{\sqrt{75}}-2\sqrt{\sqrt{75}}-6\sqrt{137}=6\sqrt{\sqrt{75}}-6\sqrt{137}\) \(b.\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right).\dfrac{1}{\sqrt{15}}=10\sqrt{3}.\dfrac{1}{\sqrt{3}.\sqrt{5}}=2\sqrt{5}\) \(d.\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}=\left(60\sqrt{2}-80\sqrt{2}+105\sqrt{2}\right).\dfrac{1}{\sqrt{10}}=85\sqrt{2}.\dfrac{1}{\sqrt{2}.\sqrt{5}}=17\sqrt{5}\) \(e.\left(\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right):\sqrt{7}=\left(\sqrt{\dfrac{1}{7}}-4\sqrt{\dfrac{1}{7}}+3\sqrt{\dfrac{1}{7}}\right).\dfrac{1}{\sqrt{7}}=0\) \(2a.A=\sqrt{3+\sqrt{5+2\sqrt{3}}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}=\sqrt{9-5-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\) \(b.B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{4-2}=2\)

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

29 tháng 9 2017

Bài 1:

a/ \(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\) .

\(\Leftrightarrow\dfrac{2\left(x^2-2x+1\right)}{6}=1\)

\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{3}=1\)

\(\Leftrightarrow\left(x-1\right)^2=3\) \(\Rightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+1\\x=-\sqrt{3}+1\end{matrix}\right.\)

vậy tập nghiệm của phương trình S=\(\left\{1-\sqrt{3};\sqrt{3}+1\right\}\)

b/ ta có: \(\dfrac{6}{x-4}=\sqrt{2}\Leftrightarrow\sqrt{2}\left(x-4\right)=6\)

\(\Leftrightarrow x\sqrt{2}-4\sqrt{2}=6\)

\(\Leftrightarrow x\sqrt{2}=6+4\sqrt{2}\)

\(\Leftrightarrow x=\dfrac{6+4\sqrt{2}}{2}=4+3\sqrt{2}\)

vậy \(x=4+3\sqrt{2}\) là nghiệm của phương trình

c/ \(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)

\(\Leftrightarrow\left(\sqrt{\dfrac{20}{2x^2-8x+8}}\right)^2=\left(\sqrt{5}\right)^2\)

\(\Leftrightarrow\dfrac{20}{2\left(x^2-4x+4\right)}=5\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)^2}=\dfrac{10}{2}\)

\(\Rightarrow\left(x-2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)

vậy tập nghiệm của phương trình \(S=\left\{2+\sqrt{2};2-\sqrt{2}\right\}\)

29 tháng 9 2017

Bài 2:

a/ đặt A= \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)

\(\Leftrightarrow A^2=3+\sqrt{5}+3-\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(\Leftrightarrow A^2=6-2\sqrt{9-5}\)

\(\Leftrightarrow A^2=6-2\sqrt{4}=6-4=2\)

\(\Rightarrow A=\sqrt{2}\)

\(\Rightarrow\)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\) = \(\sqrt{2}\)

\(\Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

b/ \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\dfrac{\sqrt{12}}{\sqrt{15}}+\dfrac{\sqrt{75}}{\sqrt{15}}+\dfrac{\sqrt{27}}{\sqrt{15}}=\sqrt{\dfrac{12}{15}}+\sqrt{\dfrac{75}{15}}+\sqrt{\dfrac{27}{15}}\)

\(=\dfrac{2\sqrt{5}}{5}+\sqrt{5}+\dfrac{3\sqrt{5}}{5}=\left(\dfrac{2\sqrt{5}}{5}+\dfrac{3\sqrt{5}}{5}\right)+\sqrt{5}\)

\(=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)

c/ \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(24\sqrt{5}-80\sqrt{2}+105\sqrt{2}\right):\sqrt{10}\)

\(=\left(24\sqrt{5}+25\sqrt{2}\right):\sqrt{10}=\dfrac{24\sqrt{5}}{\sqrt{10}}+\dfrac{25\sqrt{2}}{\sqrt{10}}\)

\(=12\sqrt{2}+5\sqrt{5}\)

6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)